441 research outputs found

    Origin of the 2009 Mexico influenza virus: a comparative phylogenetic analysis of the principal external antigens and matrix protein

    Get PDF
    Triple-reassortant swine influenza A (H1) viruses, containing genes from avian, human, and swine influenza viruses, emerged and became an outbreak among humans worldwide. Over a 1,000 cases were identified within the first month, chiefly in Mexico and the United States. Here, the phylogenetic analysis of haemagglutin (HA), neuraminidase (NA), and matrix protein (MP) was carried out. The analysis showed that the H1 of this reassortant originated from American pigs, while NA and MP were more likely from European pigs. All of the 2009 isolates appear homogeneous and cluster together, although they are distinct from classical human A (H1N1) viruses

    Resistance to novel drug classes

    Get PDF
    Understanding the mechanisms that underlie resistance development to novel drugs is essential to a better clinical management of resistant viruses and to prevent further resistance development and spread. RECENT FINDINGS: Integrase inhibitors and CCR5 antagonists are the more recent antiretroviral classes developed. The HIV-1 integrase, responsible for the chromosomal integration of the newly synthesized double-stranded viral DNA into the host genomic DNA, represents a new and important target; and two integrase inhibitors (INIs), raltegravir and elvitegravir, have been shown promising results in clinical trials. Viral entry is also an attractive step for the development of new drugs against HIV variants resistant to current antiretroviral drugs, and two CCR5 antagonists have been designed to inhibit HIV-1 binding to R5 co-receptor and are under clinical investigation. SUMMARY: Drug resistance to INIs occurs through the selection of mutations within HIV integrase. The kinetic of selection seems rapid and one mutation alone is able to confer resistance to integrase inhibitor, suggesting that this class of drug has a low genetic barrier. Two ways could explain the failure of the CCR5 antagonist class: a rapid outgrowth of pre-existing archived X4 virus or the selection of a resistance to CCR5 antagonists through amino acid changes in V

    Mechanisms underlying activity of antiretroviral drugs in HIV-1-infected macrophages: New therapeutic strategies

    Get PDF
    Monocyte-derived macrophages (M/M) are considered the second cellular target of HIV-1 and a crucial virus reservoir. M/M are widely distributed in all tissues and organs, including the CNS, where they represent the most common HIV-infected cells. Differently from activated CD4+ T lymphocytes, M/M are resistant to the cytopathic effect of HIV and survive HIV infection for a long lime. Moreover, HIV-1 replication in M/M is a key pathogenetic event during the course of HIV-1 infection. Overall findings strongly support the clinical relevance of anti-HIV drugs in M/M. Nucleoside RT inhibitors (NRTIs) are more active against HIV in M/M than in CD4+ T lymphocytes. Their activity is further boosted by the presence of an additional monophosphate group (i.e., a phosphonate group, as in the case of Tenofovir), thus overcoming the bottleneck of the low phosphorylation ability of M/M. In contrast, the antiviral activity of non-NRTIs (not affecting the DNA chain elongation) in M/M is similar to that in CD4+ T lymphocytes. Protease inhibitors are the only clinically approved drugs acting at a late stage of the HIV lifecycle. They are able to interfere with HIV replication in HIV-1 chronically infected M/M, even if at concentrations greater than those observed in HIV-1 chronically infected CD4+ T lymphocytes. Finally, several new drugs have been shown to interfere efficiently with HIV replication in M/M, including entry inhibitors. A better understanding of the activity of the anti-HIV drugs in M/M may represent a key element for the design of effective anti-HIV chemotherapy. © Society for Leukocyte Biology

    Computational analysis of Human Immunodeficiency Virus (HIV) Type-1 reverse transcriptase crystallographic models based on significant conserved residues found in Highly Active Antiretroviral Therapy (HAART)-treated patients.

    Get PDF
    Reverse transcription of the viral single-stranded (+) RNA genome into double-stranded DNA is an essential step in the human immunodeficiency virus' (HIV) life-cycle. Although several viral proteins are involved in the regulation and/or efficiency of reverse transcription, the process of retroviral DNA synthesis is entirely dependent on the enzymatic activities of the retroviral reverse transcriptase enzyme (RT). Due to its crucial role in the HIV life-cycle, RT is a primary target for anti-HIV drug development. Nonetheless, drug resistance is the major problem affecting the clinical efficacy of antiretroviral agents. Incomplete pharmacological pressure represents the logical cause and not the consequence of different mutation pathways in RT associated with approved inhibitors resistance. In this review we have analyzed RT Protein Data Bank (PDB) models using our innovative computational approach “GRID Based Pharmacophore Model” (GBPM). This method was applied to clinically relevant RT conserved residues found in a large cohort of HAART treated patients. The PDB entries have been selected among the unbound and the complexed models with DNA and/or inhibitors. Such an approach has revealed itself useful to highlight the mutation effects in the drug-RT recognition as well as in the heterodimer stabilization of the enzyme. Most of the clinical and biochemical evidences already reported in the literature have been rationalized at molecular level via the GBPM computational approach. A definite future application of this method will be the identification of conserved regions of critical macromolecules, such as the HIV-1 RT, to be targeted for the development of innovative therapeutic agents

    Optimizing HIV therapy. A consensus project on differences between cytidine analogues and regime compactness

    Get PDF
    The identification of the most effective HAART regimens in different clinical settings is still an issue. The aim of the study was to analyze how the compactness of HAART regimens is perceived and if differences between lamivudine (3TC) and emtricitabine (FTC) do exist according to a panel of Italian HIV/AIDS clinicians, using the Delphi method

    Identification of the novel KI polyomavirus in paranasal and lung tissues

    Get PDF
    KI is a novel polyomavirus identified in the respiratory secretions of children with acute respiratory symptoms. Whether this reflects a causal role of the virus in the human respiratory disease remains to be established. To investigate the presence of KIV in the respiratory tissue, we examined 20 fresh lung cancer specimens and surrounding normal tissue along with one paranasal and one lung biopsy from two transplanted children. KIV-VP1 gene was detected in 9/20 lung cancer patients and 2/2 transplanted patients. However, amplification of the sequence coding for the C-terminal part of the early region of KIV performed on the 11 positive cases was successful only in two malignant lung tissues, one surrounding normal tissue, and 1/2 biopsies tested. Phylogenetic analysis performed on the early region of KIV (including the four Italian isolates), BKV and JCV revealed the presence of three distinct clades. Within the KIV clade two sub-clades were observed. A sub-clade A containing the four Italian strains, and a sub-clade B comprising the Swedish and Australian isolates. Interestingly, the two Italian strains identified in normal tissue clustered together, whereas those detected in malignant tissue fell outside this cluster. In vitro studies are needed to investigate the transforming potential of KIV strains. J. Med. Virol. 81:558-561,2009. (C) 2009 Wiley-Liss, Inc

    HIV-1 viral load is elevated in individuals with reverse transcriptase mutation M184V/I during virological failure of first line antiretroviral therapy and is associated with compensatory mutation L74I

    Get PDF
    Background: M184V/I cause high-level lamivudine (3TC) and emtricitabine (FTC) resistance, and increased tenofovir (TDF) susceptibility. Nonetheless, 3TC and FTC (collectively referred to as XTC) appear to retain modest activity against HIV-1 with these mutations possibly as a result of reduced replication capacity. Here we determined how M184V/I impacts virus load (VL) in patients failing therapy on a TDF/XTC plus nonnucleoside RT inhibitor (NNRTI)-containing regimen. / Methods: We compared VL in absence and presence M184V/I across studies using random effects meta-analysis. The effect of mutations on virus RT activity and infectiousness was analysed in vitro. / Results: M184I/V was present in 817 (56.5%) of 1445 individuals with VF. VL was similar in individuals with or without M184I/V (difference in log10VL 0.18, 95% CI 0.05-0.31). CD4 count was lower both at initiation of ART and at VF in participants who went on to develop M184V/I. L74I was present in 10.2% of persons with M184V/I but absent in persons without M184V/I (p<0.0001). In vitro, L74I compensated for defective replication of M184V mutated virus. / Conclusion: Virus loads were similar in persons with and without M184V/I during VF on a TDF/XTC/NNRTI-containing regimen. We therefore do not find evidence for a benefit of XTC in the context of first line failure on this combination

    Non-B HIV type 1 subtypes among men who have sex with men in Rome, Italy

    Get PDF
    An increase in the circulation of HIV-1 non-B subtypes has been observed in recent years in Western European countries. Due to the lack of data on the circulation of HIV-1 non-B subtypes among European HIV-1-infected men who have sex with men (MSM), a biomolecular study was conducted in Rome, Italy. HIV-1 partial pol gene sequences from 111 MSM individuals (76 drug naive and 35 drug experienced) were collected during the years 2004-2006. All these sequences were analyzed using the REGA HIV-1 Subtyping Tool, and aligned using CLUSTAL X followed by manual editing using the Bioedit software. A BLAST search for non-B subtype sequences was also performed. Twenty-six (23.4%) MSM were not Italians. Eight individuals (7.2%) were diagnosed as HIV infected before 1991, 20 (18.0%) between 1991 and 1999, and 83 (74.8%) from 2000 to 2006. Fifteen (15/111, 13.5%) individuals were infected with the non-B subtype. The percentage of infection with HIV-1 non-B subtypes was 8.2% (7/85) among Italian MSM and 30.8% (8/26) among the non-Italians (OR = 4.95 95% IC: 1.40-17.87). Individuals infected with the non-B subtype were significantly younger than those infected with the HIV-1 B subtype (28 years vs. 34 years, p = 0.003). The CRFs were more prevalent (8.1%) than pure subtypes (5.4%), which were distributed as follows: subtype C (2.6%), subtype A1 (1.7%), and subtype F1 (0.9%). Major mutations conferring resistance to antiretroviral drugs (ARV) were not found among HIV-1 non-B subtype drug-naive patients but were found in two ARV-experienced individuals. The data show that viral diversity is likely increasing in a population group that had been previously characterized by the circulation of HIV-1 subtype B. © Copyright 2009, Mary Ann Liebert, Inc

    Successful switch to tenofovir after suboptimal response to entecavir in an immunocompromised patient with chronic hepatitis B and without genotypic hepatitis B virus resistance

    Get PDF
    We report a case of an immunocompromised patient affected by chronic hepatitis B virus (HBV) with high basal HBV viremia (>8 log(10) IU/ml) who failed an entecavir regimen, despite the absence of primary or secondary drug resistance mutations. The patient achieved sustained virological success (serum HBV DNA <12 IU/ml) when tenofovir was added to the treatment. This case highlights the difficulty in choosing an optimal therapy in such specific conditions and supports the concept of tailoring therapy (including combination regimens) on the basis of the particular conditions of each individual patient

    Molecular analysis of hepatitis C virus infection in Bulgarian injecting drug users

    Get PDF
    Intravenous drug users constitute a group at risk for hepatitis C virus (HCV) infection. Today, no data are available on the molecular epidemiology of HCV in Bulgaria despite the fact that in recent years the incidence of acute hepatitis C infection among Bulgarian intravenous drug users increased sixfold and about 2/3 of them developed a chronic infection. The aim of this study was to determine the circulation of hepatitis C genotypes among drug users and to study the evolution and transmission history of the virus by molecular clock and Bayesian methods, respectively. Sequencing of NS5B gene showed that the genotype 3a was the most prevalent type among intravenous drug users. In the Bayesian tree, the 3a subtypes grouped in one main clade with one small cluster well statistically supported. The root of the tree was dated back to the year 1836, and the main clade from Bulgaria was dated 1960. The effective number of infections remained constant until about years 1950s, growing exponentially from the 1960s to the 1990s, reaching a plateau in the years 2000. The not significant intermixing with isolates from other countries may suggest a segregated circulation of the epidemic between 1940s and 1980s. The plateau reached by the epidemic in the early 2000s may indicate the partial success of the new preventive policies adopted in Bulgaria. J. Med. Virol. 83:1565-1570, 2011. © 2011 Wiley-Liss, Inc
    • …
    corecore