Understanding the mechanisms that underlie resistance
development to novel drugs is essential to a better clinical management of
resistant viruses and to prevent further resistance development and spread.
RECENT FINDINGS: Integrase inhibitors and CCR5 antagonists are the more recent
antiretroviral classes developed. The HIV-1 integrase, responsible for the
chromosomal integration of the newly synthesized double-stranded viral DNA into
the host genomic DNA, represents a new and important target; and two integrase
inhibitors (INIs), raltegravir and elvitegravir, have been shown promising
results in clinical trials. Viral entry is also an attractive step for the
development of new drugs against HIV variants resistant to current antiretroviral
drugs, and two CCR5 antagonists have been designed to inhibit HIV-1 binding to R5
co-receptor and are under clinical investigation.
SUMMARY: Drug resistance to INIs occurs through the selection of mutations within
HIV integrase. The kinetic of selection seems rapid and one mutation alone is
able to confer resistance to integrase inhibitor, suggesting that this class of
drug has a low genetic barrier. Two ways could explain the failure of the CCR5
antagonist class: a rapid outgrowth of pre-existing archived X4 virus or the
selection of a resistance to CCR5 antagonists through amino acid changes in V