1,268 research outputs found

    Dynamical formation and manipulation of Majorana fermions in driven quantum wires

    Full text link
    Controlling the dynamics of Majorana fermions (MF) subject to time-varying driving fields is of fundamental importance for the practical realization of topological quantum computing. In this work we study how it is possible to dynamically generate and maintain the topological phase in one-dimensional superconducting nanowires after the temporal variation of the Hamiltonian parameters. Remarkably we show that for a sudden quench the system can never relax towards a state exhibiting fully developed MF, independently of the initial and final Hamiltonians. Only for sufficiently slow protocols the system behaves adiabatically, and the topological phase can be reached. Finally we address the crucial question of how "adiabatic" a protocol must be in order to manipulate the MF inside the topological phase without deteriorating their Majorana character.Comment: 5 pages, 4 eps figure

    Cooper-pair propagation and superconducting correlations in graphene

    Get PDF
    We investigate the Cooper-pair propagation and the proximity effect in graphene under conditions in which the distance L between superconducting electrodes is much larger than the width W of the contacts. In the case of undoped graphene, supercurrents may exist with a spatial decay proportional to W^2/L^3. This changes upon doping into a 1/L^2 behavior, opening the possibility to observe a supercurrent over length scales above 1 micron at suitable doping levels. We also show that there is in general a crossover temperature T ~ v_F/k_B L that marks the onset of the strong decay of the supercurrent, and that corresponds to the scale below which the Cooper pairs are not disrupted by thermal effects during their propagation.Comment: 5 pages, 2 figures; corrected discussio

    First-principles approach to excitons in time-resolved and angle-resolved photoemission spectra

    Full text link
    We show that any {\em quasi-particle} or GW approximation to the self-energy does not capture excitonic features in time-resolved (TR) photoemission spectroscopy. In this work we put forward a first-principles approach and propose a feasible diagrammatic approximation to solve this problem. We also derive an alternative formula for the TR photocurrent which involves a single time-integral of the lesser Green's function. The diagrammatic approximation applies to the {\em relaxed} regime characterized by the presence of quasi-stationary excitons and vanishing polarization. The main distinctive feature of the theory is that the diagrams must be evaluated using {\em excited} Green's functions. As this is not standard the analytic derivation is presented in detail. The final result is an expression for the lesser Green's function in terms of quantities that can all be calculated {\em ab initio}. The validity of the proposed theory is illustrated in a one-dimensional model system with a direct gap. We discuss possible scenarios and highlight some universal features of the exciton peaks. Our results indicate that the exciton dispersion can be observed in TR {\em and} angle-resolved photoemission.Comment: 15 pages, 8 figure

    Non-equilibrium Bethe-Salpeter equation for transient photo-absorption spectroscopy

    Get PDF
    In this work we propose an accurate first-principle approach to calculate the transient photo--absorption spectrum measured in Pump\&\,Probe experiments. We formulate a condition of {\em adiabaticity} and thoroughly analyze the simplifications brought about by the fulfillment of this condition in the non--equilibrium Green's function (NEGF) framework. Starting from the Kadanoff-Baym equations we derive a non--equilibrium Bethe--Salpeter equation (BSE) for the response function that can be implemented in most of the already existing {\em ab--initio} codes. In addition, the {\em adiabatic} approximation is benchmarked against full NEGF simulations in simple model hamiltonians, even under extreme, nonadiabatic conditions where it is expected to fail. We find that the non--equilibrium BSE is very robust and captures important spectral features in a wide range of experimental configurations.Comment: 13 pages, 5 captioned figure

    Benchmarking Nonequilibrium Green's Functions against Configuration Interaction for time-dependent Auger decay processes

    Full text link
    We have recently proposed a Nonequilibrium Green's Function (NEGF) approach to include Auger decay processes in the ultrafast charge dynamics of photoionized molecules. Within the so called Generalized Kadanoff-Baym Ansatz the fundamental unknowns of the NEGF equations are the reduced one-particle density matrix of bound electrons and the occupations of the continuum states. Both unknowns are one-time functions like the density in Time-Dependent Functional Theory (TDDFT). In this work we assess the accuracy of the approach against Configuration Interaction (CI) calculations in one-dimensional model systems. Our results show that NEGF correctly captures qualitative and quantitative features of the relaxation dynamics provided that the energy of the Auger electron is much larger than the Coulomb repulsion between two holes in the valence shells. For the accuracy of the results dynamical electron-electron correlations or, equivalently, memory effects play a pivotal role. The combination of our NEGF approach with the Sham-Schl\"uter equation may provide useful insights for the development of TDDFT exchange-correlation potentials with a history dependence.Comment: 7 pages, 3 figure

    Time-dependent evolution of two coupled Luttinger liquids

    Get PDF
    We consider two disconnected Luttinger liquids which are coupled at t=0t=0 through chiral density-density interactions. Both for t<0t<0 and t≥0t \geq 0 the system is exactly solvable by means of bosonization and this allows to evaluate analytically the time-dependence of correlation functions. We find that in the long-time limit the critical exponent governing the one-particle correlation function differs from the exponent dictated by the equilibrium ground state of the coupled system. We also discuss how this reflects on some physical quantities which are accessible in real experiments.Comment: 6 pages, 1 eps fig, revised version accepted for publication in Phys. Rev.

    First-principles nonequilibrium Green's function approach to transient photoabsorption: Application to atoms

    Full text link
    We put forward a first-principle NonEquilibrium Green's Function (NEGF) approach to calculate the transient photoabsorption spectrum of optically thin samples. The method can deal with pump fields of arbitrary strength, frequency and duration as well as for overlapping and nonoverlapping pump and probe pulses. The electron-electron repulsion is accounted for by the correlation self-energy, and the resulting numerical scheme deals with matrices that scale quadratically with the system size. Two recent experiments, the first on helium and the second on krypton, are addressed. For the first experiment we explain the bending of the Autler-Townes absorption peaks with increasing the pump-probe delay \t, and relate the bending to the thickness and density of the gas. For the second experiment we find that sizable spectral structures of the pump-generated admixture of Kr ions are fingerprints of {\em dynamical correlation} effects, and hence they cannot be reproduced by time-local self-energy approximations. Remarkably, the NEGF approach also captures the retardation of the absorption onset of Kr2+^{2+} with respect to Kr1+^{1+} as a function of \t.Comment: 13 pages, 8 captioned figure

    Charge dynamics in molecular junctions: Nonequilibrium Green's Function approach made fast

    Full text link
    Real-time Green's function simulations of molecular junctions (open quantum systems) are typically performed by solving the Kadanoff-Baym equations (KBE). The KBE, however, impose a serious limitation on the maximum propagation time due to the large memory storage needed. In this work we propose a simplified Green's function approach based on the Generalized Kadanoff-Baym Ansatz (GKBA) to overcome the KBE limitation on time, significantly speed up the calculations, and yet stay close to the KBE results. This is achieved through a twofold advance: first we show how to make the GKBA work in open systems and then construct a suitable quasi-particle propagator that includes correlation effects in a diagrammatic fashion. We also provide evidence that our GKBA scheme, although already in good agreement with the KBE approach, can be further improved without increasing the computational cost.Comment: 13 pages, 13 figure

    Electronic screening and correlated superconductivity in carbon nanotubes

    Full text link
    A theoretical analysis of the superconductivity observed recently in Carbon nanotubes is proposed. We argue that ultra-small (diameter ∼0.4nm \sim 0.4 nm) single wall carbon nanotubes (with transition temperature Tc∼15oKT_c\sim 15 ^{o}K) and entirely end-bonded multi-walled ones (Tc∼12oKT_c\sim 12 ^{o}K) can superconduct by an electronic mechanism, basically the same in both cases. By a Luttinger liquid -like approach, one finds enhanced superconducting correlations due to the strong screening of the long-range part of the Coulomb repulsion. Based on this finding, we perform a detailed analysis on the resulting Hubbard-like model, and calculate transition temperatures of the same order of magnitude as the measured ones.Comment: 6 pages, 1 figure, PACS: 71.10.Pm,74.50.+r,71.20.Tx, to appear in Phys. Rev.

    Self-consistent screening enhances stability of the nonequilibrium excitonic insulator phase

    Full text link
    The nonequilibrium excitonic insulator (NEQ-EI) is an excited state of matter characterized by a finite density of coherent excitons and a time-dependent macroscopic polarization. The stability of this exciton superfluid as the density grows is jeopardized by the increased screening efficiency of the looser excitons. In this work we put forward a Hartree plus Screened Exchange HSEX scheme to predict the critical density at which the transition toward a free electron-hole plasma occurs. The dielectric function is calculated self-consistently using the NEQ-EI polarization and found to vanish in the long-wavelength limit. This property makes the exciton superfluid stable up to relatively high densities. Numerical results for the MoS2_{2} monolayers indicate that the NEQ-EI phase survives up to densities of the order of 1012cm−210^{12}\mathrm{cm}^{-2}.Comment: 8 pages, 4 figure
    • …
    corecore