36,714 research outputs found

    On choice of connection in loop quantum gravity

    Get PDF
    We investigate the quantum area operator in the loop approach based on the Lorentz covariant hamiltonian formulation of general relativity. We show that there exists a two-parameter family of Lorentz connections giving rise to Wilson lines which are eigenstates of the area operator. For each connection the area spectrum is evaluated. In particular, the results of the su(2) approach turn out to be included in the formalism. However, only one connection from the family is a spacetime connection ensuring that the 4d diffeomorphism invariance is preserved under quantization. It leads to the area spectrum independent of the Immirzi parameter. As a consequence, we conclude that the su(2) approach must be modified accordingly to the results obtained since it breaks one of the classical symmetries.Comment: 11 pages, RevTEX; minor changes; a sign mistake correcte

    Reality conditions for Ashtekar gravity from Lorentz-covariant formulation

    Full text link
    We show the equivalence of the Lorentz-covariant canonical formulation considered for the Immirzi parameter β=i\beta=i to the selfdual Ashtekar gravity. We also propose to deal with the reality conditions in terms of Dirac brackets derived from the covariant formulation and defined on an extended phase space which involves, besides the selfdual variables, also their anti-selfdual counterparts.Comment: 14 page

    The ELAIS deep X-ray survey - I. Chandra source catalogue and first results

    Get PDF
    We present an analysis of two deep (75 ks) Chandra observations of the European Large Area Infrared Space Observatory (ISO) Survey (ELAIS) fields N1 and N2 as the first results from the ELAIS deep X-ray survey. This survey is being conducted in well-studied regions with extensive multiwavelength coverage. Here we present the Chandra source catalogues along with an analysis of source counts, hardness ratios and optical classifications. A total of 233 X-ray point sources are detected in addition to two soft extended sources, which are found to be associated with galaxy clusters. An overdensity of sources is found in N1 with 30 per cent more sources than N2, which we attribute to large-scale structure. A similar variance is seen between other deep Chandra surveys. The source count statistics reveal an increasing fraction of hard sources at fainter fluxes. The number of galaxy-like counterparts also increases dramatically towards fainter fluxes, consistent with the emergence of a large population of obscured sources

    Three dimensional loop quantum gravity: physical scalar product and spin foam models

    Full text link
    In this paper, we address the problem of the dynamics in three dimensional loop quantum gravity with zero cosmological constant. We construct a rigorous definition of Rovelli's generalized projection operator from the kinematical Hilbert space--corresponding to the quantization of the infinite dimensional kinematical configuration space of the theory--to the physical Hilbert space. In particular, we provide the definition of the physical scalar product which can be represented in terms of a sum over (finite) spin-foam amplitudes. Therefore, we establish a clear-cut connection between the canonical quantization of three dimensional gravity and spin-foam models. We emphasize two main properties of the result: first that no cut-off in the kinematical degrees of freedom of the theory is introduced (in contrast to standard `lattice' methods), and second that no ill-defined sum over spins (`bubble' divergences) are present in the spin foam representation.Comment: Typos corrected, version appearing in Class. Quant. Gra

    NIKEL: Electronics and data acquisition for kilopixels kinetic inductance camera

    Full text link
    A prototype of digital frequency multiplexing electronics allowing the real time monitoring of microwave kinetic inductance detector (MKIDs) arrays for mm-wave astronomy has been developed. Thanks to the frequency multiplexing, it can monitor simultaneously 400 pixels over a 500 MHz bandwidth and requires only two coaxial cables for instrumenting such a large array. The chosen solution and the performances achieved are presented in this paper.Comment: 21 pages, 14 figure

    Decoherence from internal degrees of freedom for cluster of mesoparticles : a hierarchy of master equations

    Get PDF
    A mesoscopic evolution equation for an ensemble of mesoparticles follows after the elimination of internal degrees of freedom. If the system is composed of a hierarchy of scales, the reduction procedure could be worked repeatedly and the characterization of this iterating method is carried out. Namely, a prescription describing a discrete hierarchy of master equations for the density operator is obtained. Decoherence follows from the irreversible coupling of the systems, defined by mesoscopic variables, to internal degrees of freedom. We discuss briefly the existence of systems with the same dynamics laws at different scales. We made an explicit calculation for an ensemble of particles with internal harmonic interaction in an external anharmonic field. New conditions related to the semiclassical limit for mesoscopic systems (Wigner-function) are conjectured.Comment: 19 pages, 0 figures, late

    Hilbert space structure of covariant loop quantum gravity

    Full text link
    We investigate the Hilbert space in the Lorentz covariant approach to loop quantum gravity. We restrict ourselves to the space where all area operators are simultaneously diagonalizable, assuming that it exists. In this sector quantum states are realized by a generalization of spin network states based on Lorentz Wilson lines projected on irreducible representations of an SO(3) subgroup. The problem of infinite dimensionality of the unitary Lorentz representations is absent due to this projection. Nevertheless, the projection preserves the Lorentz covariance of the Wilson lines so that the symmetry is not broken. Under certain conditions the states can be thought as functions on a homogeneous space. We define the inner product as an integral over this space. With respect to this inner product the spin networks form an orthonormal basis in the investigated sector. We argue that it is the only relevant part of a larger state space arising in the approach. The problem of the noncommutativity of the Lorentz connection is solved by restriction to the simple representations. The resulting structure shows similarities with the spin foam approach.Comment: 20 pages, RevTE

    Beta-delayed-neutron studies of 135,136^{135,136}Sb and 140^{140}I performed with trapped ions

    Get PDF
    Beta-delayed-neutron (β\betan) spectroscopy was performed using the Beta-decay Paul Trap and an array of radiation detectors. The β\betan branching ratios and energy spectra for 135,136^{135,136}Sb and 140^{140}I were obtained by measuring the time of flight of recoil ions emerging from the trapped ion cloud. These nuclei are located at the edge of an isotopic region identified as having β\betan branching ratios that impact the r-process abundance pattern around the A~130 peak. For 135,136^{135,136}Sb and 140^{140}I, β\betan branching ratios of 14.6(11)%, 17.6(28)%, and 7.6(28)% were determined, respectively. The β\betan energy spectra obtained for 135^{135}Sb and 140^{140}I are compared with results from direct neutron measurements, and the β\betan energy spectrum for 136^{136}Sb has been measured for the first time
    • …
    corecore