44,633 research outputs found

    Explosive Events and the Evolution of the Photospheric Magnetic Field

    Full text link
    Transition region explosive events have long been suggested as direct signatures of magnetic reconnection in the solar atmosphere. In seeking further observational evidence to support this interpretation, we study the relation between explosive events and the evolution of the solar magnetic field as seen in line-of-sight photospheric magnetograms. We find that about 38% of events show changes of the magnetic structure in the photosphere at the location of an explosive event over a time period of 1 h. We also discuss potential ambiguities in the analysis of high sensitivity magnetograms

    Solving the minimum labelling spanning tree problem using hybrid local search

    Get PDF
    Given a connected, undirected graph whose edges are labelled (or coloured), the minimum labelling spanning tree (MLST) problem seeks a spanning tree whose edges have the smallest number of distinct labels (or colours). In recent work, the MLST problem has been shown to be NP-hard and some effective heuristics (Modified Genetic Algorithm (MGA) and Pilot Method (PILOT)) have been proposed and analyzed. A hybrid local search method, that we call Group-Swap Variable Neighbourhood Search (GS-VNS), is proposed in this paper. It is obtained by combining two classic metaheuristics: Variable Neighbourhood Search (VNS) and Simulated Annealing (SA). Computational experiments show that GS-VNS outperforms MGA and PILOT. Furthermore, a comparison with the results provided by an exact approach shows that we may quickly obtain optimal or near-optimal solutions with the proposed heuristic

    Control of quantum fluctuations for a Yukawa interaction in the Kaluza Klein picture

    Full text link
    We study a system of fermions interacting with a scalar field, in 4+1 dimensions where the 5th dimension is compactified, using an exact functional method, where quantum fluctuations are controlled by the amplitude of the bare fermion mass. The integration of our equationsleads to the properties of the dressed Yukawa coupling, that we study at one-loop so as to show the consistency of the approach. Beyond one loop, the non-perturbative aspect of the method gives us the possibility to derive the dynamical fermion mass. The result obtained is cut off independent and this derivation proposes an alternative to the Schwinger-Dyson approach.Comment: extended discussion on the scalar effective potentia

    Information criteria for efficient quantum state estimation

    Full text link
    Recently several more efficient versions of quantum state tomography have been proposed, with the purpose of making tomography feasible even for many-qubit states. The number of state parameters to be estimated is reduced by tentatively introducing certain simplifying assumptions on the form of the quantum state, and subsequently using the data to rigorously verify these assumptions. The simplifying assumptions considered so far were (i) the state can be well approximated to be of low rank, or (ii) the state can be well approximated as a matrix product state. We add one more method in that same spirit: we allow in principle any model for the state, using any (small) number of parameters (which can, e.g., be chosen to have a clear physical meaning), and the data are used to verify the model. The proof that this method is valid cannot be as strict as in above-mentioned cases, but is based on well-established statistical methods that go under the name of "information criteria." We exploit here, in particular, the Akaike Information Criterion (AIC). We illustrate the method by simulating experiments on (noisy) Dicke states

    Constructing topological models by symmetrization: A PEPS study

    Get PDF
    Symmetrization of topologically ordered wavefunctions is a powerful method for constructing new topological models. Here, we study wavefunctions obtained by symmetrizing quantum double models of a group GG in the Projected Entangled Pair States (PEPS) formalism. We show that symmetrization naturally gives rise to a larger symmetry group G~\tilde G which is always non-abelian. We prove that by symmetrizing on sufficiently large blocks, one can always construct wavefunctions in the same phase as the double model of G~\tilde G. In order to understand the effect of symmetrization on smaller patches, we carry out numerical studies for the toric code model, where we find strong evidence that symmetrizing on individual spins gives rise to a critical model which is at the phase transitions of two inequivalent toric codes, obtained by anyon condensation from the double model of G~\tilde G.Comment: 10 pages. v2: accepted versio

    A Born-Infeld-like f(R) gravity

    Full text link
    Several features of an f(R)f(R) theory in which there is a maximum value for the curvature are analyzed. The theory admits the vaccuum solutions of GR, and also the radiation evolution for the scale factor of the standard cosmological model. Working in the Jordan frame, a complete analysis of the phase space is performed, and its results supported with examples obtainted by numerical integration. In particular, we showed that theory has nonsingular cosmological solutions which after the bounce enter a phase of de Sitter expansion and subsequently relax to a GR-like radiation-dominated evolution.Comment: Latex file, 14 pages, 7 figures (jpg format), including more detailed discussions than previous version, accepted for publication in Physical Review

    High-pressure x-ray diffraction study of bulk and nanocrystalline PbMoO4

    Full text link
    We studied the effects of high-pressure on the crystalline structure of bulk and nanocrystalline scheelite-type PbMoO4. We found that in both cases the compressibility of the materials is highly non-isotropic, being the c-axis the most compressible one. We also observed that the volume compressibility of nanocrystals becomes higher that the bulk one at 5 GPa. In addition, at 10.7(8) GPa we observed the onset of an structural phase transition in bulk PbMoO4. The high-pressure phase has a monoclinic structure similar to M-fergusonite. The transition is reversible and not volume change is detected between the low- and high-pressure phases. No additional structural changes or evidence of decomposition are found up to 21.1 GPa. In contrast nanocrystalline PbMoO4 remains in the scheelite structure at least up to 16.1 GPa. Finally, the equation of state for bulk and nanocrystalline PbMoO4 are also determined.Comment: 18 pages, 4 figure

    Bifurcations in Globally Coupled Map Lattices

    Full text link
    The dynamics of globally coupled map lattices can be described in terms of a nonlinear Frobenius--Perron equation in the limit of large system size. This approach allows for an analytical computation of stationary states and their stability. The complete bifurcation behaviour of coupled tent maps near the chaotic band merging point is presented. Furthermore the time independent states of coupled logistic equations are analyzed. The bifurcation diagram of the uncoupled map carries over to the map lattice. The analytical results are supplemented with numerical simulations.Comment: 19 pages, .dvi and postscrip

    The Evolution of Luminous Compact Blue Galaxies: Disks or Spheroids?

    Get PDF
    Luminous compact blue galaxies (LCBGs) are a diverse class of galaxies characterized by high luminosities, blue colors, and high surface brightnesses. Residing at the high luminosity, high mass end of the blue sequence, LCBGs sit at the critical juncture of galaxies that are evolving from the blue to the red sequence. Yet we do not understand what drives the evolution of LCBGs, nor how they will evolve. Based on single-dish HI observations, we know that they have a diverse range of properties. LCBGs are HI-rich with M(HI)=10^{9-10.5} M(sun), have moderate M(dyn)=10^{10-12} M(sun), and 80% have gas depletion timescales less than 3 Gyr. These properties are consistent with LCBGs evolving into low-mass spirals or high mass dwarf ellipticals or dwarf irregulars. However, LCBGs do not follow the Tully-Fisher relation, nor can most evolve onto it, implying that many LCBGs are not smoothly rotating, virialized systems. GMRT and VLA HI maps confirm this conclusion revealing signatures of recent interactions and dynamically hot components in some local LCBGs, consistent with the formation of a thick disk or spheroid. Such signatures and the high incidence of close companions around LCBGs suggest that star formation in local LCBGs is likely triggered by interactions. The dynamical masses and apparent spheroid formation in LCBGs combined with previous results from optical spectroscopy are consistent with virial heating being the primary mechanism for quenching star formation in these galaxies.Comment: 4 pages, 1 figure, to appear in "Hunting for the Dark: The Hidden Side of Galaxy Formation", Malta, 19-23 Oct. 2009, eds. V.P. Debattista & C.C. Popescu, AIP Conf. Se
    corecore