147 research outputs found

    Digital teaching materials and their relationship with the metacognitive skills of students in primary education

    Get PDF
    Metacognition is a construct that is noteworthy for its relationship with the prediction and enhancement of student performance. It is of interest in education, as well as in the field of cognitive psychology, because it contributes to competencies, such as learning to learn and the understanding of information. This study conducted research at a state school in the Community of Madrid (Spain) with a sample of 130 students in Grade 3 of their primary education (8 years old). The research involved the use of a digital teaching platform called Smile and Learn, as the feedback included in the digital activities may have an effect on students' metacognition. We analyzed the implementation of the intelligent platform at school and the activities most commonly engaged in. The Junior Metacognitive Awareness Inventory (Jr. MAI) was the measuring instrument chosen for the external evaluation of metacognition. The study's results show a higher use of logic and spatial activities. A relationship is observed between the use of digital exercises that have specific feedback and work on logic and visuospatial skills with metacognitive knowledge. We discuss our findings surrounding educational implications, metacognition assessment, and recommendations for improvements of the digital materials.This research was funded by Community of Madrid ‘Industrial PhD grants’, under project number IND2017/SOC-7874

    On the way to ovules: The hormonal regulation of ovule development

    Full text link
    [EN] This review focuses on the hormonal regulation of ovule development, especially on ovule initiation, patterning, and morphogenesis. Understanding of the genetic and molecular basis of ovule development is essential from both the scientific and economic perspective. The ovule represents an attractive system to study lateral organ development in plants, and, since ovules are the precursors of seeds, full comprehension of this process can be the key to the improvement of crops, especially those depending on high production of seeds and grains. Ovule initiation, patterning, and morphogenesis are governed by complex genetic and hormonal networks involving auxins, cytokinins, brassinosteroids, and gibberellins. These coordinate the determination of the ovule number, size, and shape through the regulation of the number of ovule primordia that arise from the placenta and/or ensuring their correct development into mature functional ovules. Here we summarize the current knowledge of how ovules are formed, paying special attention to the roles of these four plant hormones.This work was supported by the Spanish Ministry for Science and Innovation-FEDER under [grant BIO2017-83138R].Barro-Trastoy, D.; Gómez, MD.; Tornero Feliciano, P.; Perez Amador, MA. (2020). On the way to ovules: The hormonal regulation of ovule development. Critical Reviews in Plant Sciences. 39(5):431-456. https://doi.org/10.1080/07352689.2020.1820203S431456395Aida, M., & Tasaka, M. (2006). Genetic control of shoot organ boundaries. Current Opinion in Plant Biology, 9(1), 72-77. doi:10.1016/j.pbi.2005.11.011Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., & Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. The Plant Cell, 9(6), 841-857. doi:10.1105/tpc.9.6.841Armenta-Medina, A., & Gillmor, C. S. (2019). Genetic, molecular and parent-of-origin regulation of early embryogenesis in flowering plants. Plant Development and Evolution, 497-543. doi:10.1016/bs.ctdb.2018.11.008Azhakanandam, S., Nole-Wilson, S., Bao, F., & Franks, R. G. (2008). SEUSSandAINTEGUMENTAMediate Patterning and Ovule Initiation during Gynoecium Medial Domain Development    . Plant Physiology, 146(3), 1165-1181. doi:10.1104/pp.107.114751Baker, C. C., Sieber, P., Wellmer, F., & Meyerowitz, E. M. (2005). The early extra petals1 Mutant Uncovers a Role for MicroRNA miR164c in Regulating Petal Number in Arabidopsis. Current Biology, 15(4), 303-315. doi:10.1016/j.cub.2005.02.017Balasubramanian, S., & Schneitz, K. (2000). NOZZLE regulates proximal-distal pattern formation, cell proliferation and early sporogenesis during ovule development in Arabidopsis thaliana. Development, 127(19), 4227-4238. doi:10.1242/dev.127.19.4227Balasubramanian, S., & Schneitz, K. (2002). NOZZLE links proximal-distal and adaxial-abaxial pattern formation during ovule development in Arabidopsis thaliana. Development, 129(18), 4291-4300. doi:10.1242/dev.129.18.4291Bao, F., Azhakanandam, S., & Franks, R. G. (2009). SEUSSandSEUSS-LIKETranscriptional Adaptors Regulate Floral and Embryonic Development in Arabidopsis. Plant Physiology, 152(2), 821-836. doi:10.1104/pp.109.146183Barro‐Trastoy, D., Carrera, E., Baños, J., Palau‐Rodríguez, J., Ruiz‐Rivero, O., Tornero, P., … Pérez‐Amador, M. A. (2020). Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms. The Plant Journal, 102(5), 1026-1041. doi:10.1111/tpj.14684Bartrina, I., Otto, E., Strnad, M., Werner, T., & Schmülling, T. (2011). Cytokinin Regulates the Activity of Reproductive Meristems, Flower Organ Size, Ovule Formation, and Thus Seed Yield in Arabidopsis thaliana      . The Plant Cell, 23(1), 69-80. doi:10.1105/tpc.110.079079Becker, A. (2020). A molecular update on the origin of the carpel. Current Opinion in Plant Biology, 53, 15-22. doi:10.1016/j.pbi.2019.08.009Bencivenga, S., Simonini, S., Benková, E., & Colombo, L. (2012). The Transcription Factors BEL1 and SPL Are Required for Cytokinin and Auxin Signaling During Ovule Development in Arabidopsis. The Plant Cell, 24(7), 2886-2897. doi:10.1105/tpc.112.100164Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G., & Friml, J. (2003). Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation. Cell, 115(5), 591-602. doi:10.1016/s0092-8674(03)00924-3BERRY, P. M., & SPINK, J. H. (2009). Understanding the effect of a triazole with anti-gibberellin activity on the growth and yield of oilseed rape (Brassica napus). The Journal of Agricultural Science, 147(3), 273-285. doi:10.1017/s0021859609008491BOUTTIER, C., & MORGAN, D. G. (1992). Ovule Development and Determination of Seed Number Per Pod in Oilseed Rape (Brassica napusL.). Journal of Experimental Botany, 43(5), 709-714. doi:10.1093/jxb/43.5.709Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1991). Genetic interactions among floral homeotic genes of Arabidopsis. Development, 112(1), 1-20. doi:10.1242/dev.112.1.1Brambilla, V., Battaglia, R., Colombo, M., Masiero, S., Bencivenga, S., Kater, M. M., & Colombo, L. (2007). Genetic and Molecular Interactions between BELL1 and MADS Box Factors Support Ovule Development inArabidopsis. The Plant Cell, 19(8), 2544-2556. doi:10.1105/tpc.107.051797Broadhvest, J., Baker, S. C., & Gasser, C. S. (2000). SHORT INTEGUMENTS 2 Promotes Growth During Arabidopsis Reproductive Development. Genetics, 155(2), 899-907. doi:10.1093/genetics/155.2.899Brumos, J., Robles, L. M., Yun, J., Vu, T. C., Jackson, S., Alonso, J. M., & Stepanova, A. N. (2018). Local Auxin Biosynthesis Is a Key Regulator of Plant Development. Developmental Cell, 47(3), 306-318.e5. doi:10.1016/j.devcel.2018.09.022Carter, B., Henderson, J. T., Svedin, E., Fiers, M., McCarthy, K., Smith, A., … Ogas, J. (2016). Cross-Talk Between Sporophyte and Gametophyte Generations Is Promoted by CHD3 Chromatin Remodelers in Arabidopsis thaliana. Genetics, 203(2), 817-829. doi:10.1534/genetics.115.180141Ceccato, L., Masiero, S., Sinha Roy, D., Bencivenga, S., Roig-Villanova, I., Ditengou, F. A., … Colombo, L. (2013). Maternal Control of PIN1 Is Required for Female Gametophyte Development in Arabidopsis. PLoS ONE, 8(6), e66148. doi:10.1371/journal.pone.0066148Chevalier, D., Batoux, M., Fulton, L., Pfister, K., Yadav, R. K., Schellenberg, M., & Schneitz, K. (2005). STRUBBELIG defines a receptor kinase-mediated signaling pathway regulating organ development in Arabidopsis. Proceedings of the National Academy of Sciences, 102(25), 9074-9079. doi:10.1073/pnas.0503526102Christensen, C. A., King, E. J., Jordan, J. R., & Drews, G. N. (1997). Megagametogenesis in Arabidopsis wild type and the Gf mutant. Sexual Plant Reproduction, 10(1), 49-64. doi:10.1007/s004970050067Conner, J., & Liu, Z. (2000). LEUNIG, a putative transcriptional corepressor that regulates AGAMOUS expression during flower development. Proceedings of the National Academy of Sciences, 97(23), 12902-12907. doi:10.1073/pnas.230352397Cucinotta, M., Colombo, L., & Roig-Villanova, I. (2014). Ovule development, a new model for lateral organ formation. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00117Cucinotta, M., Di Marzo, M., Guazzotti, A., de Folter, S., Kater, M. M., & Colombo, L. (2020). Gynoecium size and ovule number are interconnected traits that impact seed yield. Journal of Experimental Botany, 71(9), 2479-2489. doi:10.1093/jxb/eraa050Cucinotta, M., Manrique, S., Cuesta, C., Benkova, E., Novak, O., & Colombo, L. (2018). CUP-SHAPED COTYLEDON1 (CUC1) and CUC2 regulate cytokinin homeostasis to determine ovule number in Arabidopsis. Journal of Experimental Botany, 69(21), 5169-5176. doi:10.1093/jxb/ery281Cucinotta, M., Manrique, S., Guazzotti, A., Quadrelli, N. E., Mendes, M. A., Benkova, E., & Colombo, L. (2016). Cytokinin response factors integrate auxin and cytokinin pathways for female reproductive organ development. Development. doi:10.1242/dev.143545Davière, J.-M., & Achard, P. (2016). A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. Molecular Plant, 9(1), 10-20. doi:10.1016/j.molp.2015.09.011Denay, G., Chahtane, H., Tichtinsky, G., & Parcy, F. (2017). A flower is born: an update on Arabidopsis floral meristem formation. Current Opinion in Plant Biology, 35, 15-22. doi:10.1016/j.pbi.2016.09.003Elliott, R. C., Betzner, A. S., Huttner, E., Oakes, M. P., Tucker, W. Q., Gerentes, D., … Smyth, D. R. (1996). AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth. The Plant Cell, 8(2), 155-168. doi:10.1105/tpc.8.2.155Endress, P. K. (2011). Angiosperm ovules: diversity, development, evolution. Annals of Botany, 107(9), 1465-1489. doi:10.1093/aob/mcr120Enugutti, B., & Schneitz, K. (2013). Genetic analysis of ectopic growth suppression during planar growth of integuments mediated by the Arabidopsis AGC protein kinase UNICORN. BMC Plant Biology, 13(1), 2. doi:10.1186/1471-2229-13-2Enugutti, B., Kirchhelle, C., Oelschner, M., Torres Ruiz, R. A., Schliebner, I., Leister, D., & Schneitz, K. (2012). Regulation of planar growth by the Arabidopsis AGC protein kinase UNICORN. Proceedings of the National Academy of Sciences, 109(37), 15060-15065. doi:10.1073/pnas.1205089109Erbasol Serbes, I., Palovaara, J., & Groß-Hardt, R. (2019). Development and function of the flowering plant female gametophyte. Plant Development and Evolution, 401-434. doi:10.1016/bs.ctdb.2018.11.016Eshed, Y., Baum, S. F., Perea, J. V., & Bowman, J. L. (2001). Establishment of polarity in lateral organs of plants. Current Biology, 11(16), 1251-1260. doi:10.1016/s0960-9822(01)00392-xFavaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., … Colombo, L. (2003). MADS-Box Protein Complexes Control Carpel and Ovule Development in Arabidopsis. The Plant Cell, 15(11), 2603-2611. doi:10.1105/tpc.015123Ferreira, L. G., de Alencar Dusi, D. M., Irsigler, A. S. T., Gomes, A. C. M. M., Mendes, M. A., Colombo, L., & de Campos Carneiro, V. T. (2017). GID1 expression is associated with ovule development of sexual and apomictic plants. Plant Cell Reports, 37(2), 293-306. doi:10.1007/s00299-017-2230-0Franks, R. G., Wang, C., Levin, J. Z., & Liu, Z. (2002). SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression withLEUNIG. Development, 129(1), 253-263. doi:10.1242/dev.129.1.253Fridman, Y., & Savaldi-Goldstein, S. (2013). Brassinosteroids in growth control: How, when and where. Plant Science, 209, 24-31. doi:10.1016/j.plantsci.2013.04.002Friedt, W., Tu, J., & Fu, T. (2018). Academic and Economic Importance of Brassica napus Rapeseed. The Brassica napus Genome, 1-20. doi:10.1007/978-3-319-43694-4_1Gaiser, J. C., Robinson-Beers, K., & Gasser, C. S. (1995). The Arabidopsis SUPERMAN Gene Mediates Asymmetric Growth of the Outer Integument of Ovules. The Plant Cell, 7(3), 333. doi:10.2307/3869855Galbiati, F., Sinha Roy, D., Simonini, S., Cucinotta, M., Ceccato, L., Cuesta, C., … Colombo, L. (2013). An integrative model of the control of ovule primordia formation. The Plant Journal, 76(3), 446-455. doi:10.1111/tpj.12309Gallego-Giraldo, C., Hu, J., Urbez, C., Gomez, M. D., Sun, T., & Perez-Amador, M. A. (2014). Role of the gibberellin receptors GID1 during fruit-set in Arabidopsis. The Plant Journal, 79(6), 1020-1032. doi:10.1111/tpj.12603Gasser, C. S., & Skinner, D. J. (2019). Development and evolution of the unique ovules of flowering plants. Plant Development and Evolution, 373-399. doi:10.1016/bs.ctdb.2018.10.007Gifford, M. L., Dean, S., & Ingram, G. C. (2003). TheArabidopsis ACR4gene plays a role in cell layer organisation during ovule integument and sepal margin development. Development, 130(18), 4249-4258. doi:10.1242/dev.00634Goldental-Cohen, S., Israeli, A., Ori, N., & Yasuor, H. (2017). Auxin Response Dynamics During Wild-Type and entire Flower Development in Tomato. Plant and Cell Physiology, 58(10), 1661-1672. doi:10.1093/pcp/pcx102Gomez, M. D., Barro-Trastoy, D., Escoms, E., Saura-Sánchez, M., Sánchez, I., Briones-Moreno, A., … Perez-Amador, M. A. (2018). Gibberellins negatively modulate ovule number in plants. Development. doi:10.1242/dev.163865Gomez, M. D., Barro-Trastoy, D., Fuster-Almunia, C., Tornero, P., Alonso, J. M., & Perez-Amador, M. A. (2020). Gibberellin-mediated RGA-LIKE1 degradation regulates embryo sac development in Arabidopsis. Journal of Experimental Botany, 71(22), 7059-7072. doi:10.1093/jxb/eraa395Gómez, M. D., Fuster-Almunia, C., Ocaña-Cuesta, J., Alonso, J. M., & Pérez-Amador, M. A. (2019). RGL2 controls flower development, ovule number and fertility in Arabidopsis. Plant Science, 281, 82-92. doi:10.1016/j.plantsci.2019.01.014Gomez, M. D., Urbez, C., Perez-Amador, M. A., & Carbonell, J. (2011). Characterization of constricted fruit (ctf) Mutant Uncovers a Role for AtMYB117/LOF1 in Ovule and Fruit Development in Arabidopsis thaliana. PLoS ONE, 6(4), e18760. doi:10.1371/journal.pone.0018760Gomez, M. D., Ventimilla, D., Sacristan, R., & Perez-Amador, M. A. (2016). Gibberellins Regulate Ovule Integument Development by Interfering with the Transcription Factor ATS. Plant Physiology, 172(4), 2403-2415. doi:10.1104/pp.16.01231Gonçalves, B., Hasson, A., Belcram, K., Cortizo, M., Morin, H., Nikovics, K., … Arnaud, N. (2015). A conserved role forCUP-SHAPED COTYLEDONgenes during ovule development. The Plant Journal, 83(4), 732-742. doi:10.1111/tpj.12923Grobeta-Hardt, R. (2002). WUSCHEL signaling functions in interregional communication during Arabidopsis ovule development. Genes & Development, 16(9), 1129-1138. doi:10.1101/gad.225202Hashimoto, K., Miyashima, S., Sato-Nara, K., Yamada, T., & Nakajima, K. (2018). Functionally Diversified Members of the MIR165/6 Gene Family Regulate Ovule Morphogenesis in Arabidopsis thaliana. Plant and Cell Physiology, 59(5), 1017-1026. doi:10.1093/pcp/pcy042Hauser, B. A., He, J. Q., Park, S. O., & Gasser, C. S. (2000). TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis. Development, 127(10), 2219-2226. doi:10.1242/dev.127.10.2219Hedden, P., & Sponsel, V. (2015). A Century of Gibberellin Research. Journal of Plant Growth Regulation, 34(4), 740-760. doi:10.1007/s00344-015-9546-1Heisler, M. G., & Byrne, M. E. (2020). Progress in understanding the role of auxin in lateral organ development in plants. Current Opinion in Plant Biology, 53, 73-79. doi:10.1016/j.pbi.2019.10.007Heisler, M. G., Ohno, C., Das, P., Sieber, P., Reddy, G. V., Long, J. A., & Meyerowitz, E. M. (2005). Patterns of Auxin Transport and Gene Expression during Primordium Development Revealed by Live Imaging of the Arabidopsis Inflorescence Meristem. Current Biology, 15(21), 1899-1911. doi:10.1016/j.cub.2005.09.052Hibara, K., Takada, S., & Tasaka, M. (2003). CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. The Plant Journal, 36(5), 687-696. doi:10.1046/j.1365-313x.2003.01911.xHill, T. A., Broadhvest, J., Kuzoff, R. K., & Gasser, C. S. (2006). Arabidopsis SHORT INTEGUMENTS 2 Is a Mitochondrial DAR GTPase. Genetics, 174(2), 707-718. doi:10.1534/genetics.106.060657Huang, H.-Y., Jiang, W.-B., Hu, Y.-W., Wu, P., Zhu, J.-Y., Liang, W.-Q., … Lin, W.-H. (2013). BR Signal Influences Arabidopsis Ovule and Seed Number through Regulating Related Genes Expression by BZR1. Molecular Plant, 6(2), 456-469. doi:10.1093/mp/sss070Hwang, I., Sheen, J., & Müller, B. (2012). Cytokinin Signaling Networks. Annual Review of Plant Biology, 63(1), 353-380. doi:10.1146/annurev-arplant-042811-105503Ishida, T., Aida, M., Takada, S., & Tasaka, M. (2000). Involvement of CUP-SHAPED COTYLEDON Genes in Gynoecium and Ovule Development in Arabidopsis thaliana. Plant and Cell Physiology, 41(1), 60-67. doi:10.1093/pcp/41.1.60Jia, D., Chen, L., Yin, G., Yang, X., Gao, Z., Guo, Y., … Tang, W. (2020). Brassinosteroids regulate outer ovule integument growth in part via the control ofINNER NO OUTERby BRASSINOZOLE‐RESISTANT family transcription factors. Journal of Integrative Plant Biology, 62(8), 1093-1111. doi:10.1111/jipb.12915Jung, J.-H., & Park, C.-M. (2006). MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta, 225(6), 1327-1338. doi:10.1007/s00425-006-0439-1Kelley, D. R., Arreola, A., Gallagher, T. L., & Gasser, C. S. (2012). ETTIN (ARF3) physically interacts with KANADI proteins to form a functional complex essential for integument development and polarity determination in Arabidopsis. Development, 139(6), 1105-1109. doi:10.1242/dev.067918Kelley, D. R., Skinner, D. J., & Gasser, C. S. (2009). Roles of polarity determinants in ovule development. The Plant Journal, 57(6), 1054-1064. doi:10.1111/j.1365-313x.2008.03752.xKhan, S. U., Yangmiao, J., Liu, S., Zhang, K., Khan, M. H. U., Zhai, Y., … Zhou, Y. (2019). Genome-wide association studies in the genetic dissection of ovule number, seed number, and seed weight in Brassica napus L. Industrial Crops and Products, 142, 111877. doi:10.1016/j.indcrop.2019.111877Klucher, K. M., Chow, H., Reiser, L., & Fischer, R. L. (1996). The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. The Plant Cell, 8(2), 137-153. doi:10.1105/tpc.8.2.137Krizek, B. A. (1999). Ectopic expression ofAINTEGUMENTA inArabidopsis plants results in increased growth of floral organs. Developmental Genetics, 25(3), 224-236. doi:10.1002/(sici)1520-6408(1999)25:33.0.co;2-yKrizek, B. A., Blakley, I. C., Ho, Y., Freese, N., & Loraine, A. E. (2020). The Arabidopsis transcription factor AINTEGUMENTA orchestrates patterning genes and auxin signaling in the establishment of floral growth and form. The Plant Journal, 103(2), 752-768. doi:10.1111/tpj.14769Larsson, E., Roberts, C. J., Claes, A. R., Franks, R. G., & Sundberg, E. (2014). Polar Auxin Transport Is Essential for Medial versus Lateral Tissue Specification and Vascular-Mediated Valve Outgrowth in Arabidopsis Gynoecia. Plant Physiology, 166(4), 1998-2012. doi:10.1104/pp.114.245951Larsson, E., Vivian-Smith, A., Offringa, R., & Sundberg, E. (2017). Auxin Homeostasis in Arabidopsis Ovules Is Anther-Dependent at Maturation and Changes Dynamically upon Fertilization. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01735Laufs, P., Peaucelle, A., Morin, H., & Traas, J. (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development, 131(17), 4311-4322. doi:10.1242/dev.01320Lee, D.-K., Geisler, M., & Springer, P. S. (2009). LATERAL ORGAN FUSION1 and LATERAL ORGAN FUSION2function in lateral organ separation and axillary meristem formation in Arabidopsis. Development, 136(14), 2423-2432. doi:10.1242/dev.031971Leyser, O. (2017). Auxin Signaling. Plant Physiology, 176(1), 465-479. doi:10.1104/pp.17.00765Li, L., Qin, G., Tsuge, T., Hou, X., Ding, M., Aoyama, T., … Qu, L. (2008). SPOROCYTELESSmodulatesYUCCAexpression to regulate the development of lateral organs in Arabidopsis. New Phytologist, 179(3), 751-764. doi:10.1111/j.1469-8137.2008.02514.xLiao, S., Wang, L., Li, J., & Ruan, Y.-L. (2020). Cell Wall Invertase Is Essential for Ovule Development through Sugar Signaling Rather Than Provision of Carbon Nutrients. Plant Physiology, 183(3), 1126-1144. doi:10.1104/pp.20.00400Lieber, D., Lora, J., Schrempp, S., Lenhard, M., & Laux, T. (2011). Arabidopsis WIH1 and WIH2 Genes Act in the Transition from Somatic to Reproductive Cell Fate. Current Biology, 21(12), 1009-1017. doi:10.1016/j.cub.2011.05.015Lituiev, D. S., Krohn, N. G., Müller, B., Jackson, D., Hellriegel, B., Dresselhaus, T., & Grossniklaus, U. (2013). Theoretical and experimental evidence indicates that there is no detectable auxin gradient in the angiosperm female gametophyte. Development, 140(22), 4544-4553. doi:10.1242/dev.098301Liu, H.-H., Xiong, F., Duan, C.-Y., Wu, Y.-N., Zhang, Y., & Li, S. (2019). Importin β4 Mediates Nuclear Import of GRF-Interacting Factors to Control Ovule Development in Arabidopsis. Plant Physiology, 179(3), 1080-1092. doi:10.1104/pp.18.01135Liu, Z., Franks, R. G., & Klink, V. P. (2000). Regulation of Gynoecium Marginal Tissue Formation by LEUNIG and AINTEGUMENTA. The Plant Cell, 12(10), 1879-1891. doi:10.1105/tpc.12.10.1879Lora, J., Yang, X., & Tucker, M. R. (2019). Establishing a framework for female germline initiation in the plant ovule. Journal of Experimental Botany, 70(11), 2937-2949. doi:10.1093/jxb/erz212Mallory, A. C., Dugas, D. V., Bartel, D. P., & Bartel, B. (2004). MicroRNA Regulation of NAC-Domain Targets Is Required for Proper Formation and Separation of Adjacent Embryonic, Vegetative, and Floral Organs. Current Biology, 14(12), 1035-1046. doi:10.1016/j.cub.2004.06.022La Rosa, N. M. -d., Sotillo, B., Miskolczi, P., Gibbs, D. J., Vicente, J., Carbonero, P., … Blazquez, M. A. (2014). Large-Scale Identification of Gibberellin-Related Transcription Factors Defines Group VII ETHYLENE RESPONSE FACTORS as Functional DELLA Partners. PLANT PHYSIOLOGY, 166(2), 1022-1032. doi:10.1104/pp.114.244723Marsch-Martínez, N., & de Folter, S. (2016). Hormonal control of the development of the gynoecium. Current Opinion in Plant Biology, 29, 104-114. doi:10.1016/j.pbi.2015.12.006Matilla, A. J. (2019). Seed coat formation: its evolution and regulation. Seed Science Research, 29(4), 215-226. doi:10.1017/s0960258519000254McAbee, J. M., Hill, T. A., Skinner, D. J., Izhaki, A., Hauser, B. A., Meister, R. J., … Gasser, C. S. (2006). ABERRANT TESTA SHAPEencodes a KANADI family member, linking polarity determination to separation and growth of Arabidopsis ovule integuments. The Plant Journal, 46(3), 522-531. doi:10.1111/j.1365-313x

    An exploratory analysis of the implementation and use of an intelligent platform for learning in primary education

    Get PDF
    Smile and Learn is an intelligent platform with more than 4500 educational activities for children aged 3-12. The digital material developed covers all courses of primary education and most of the subjects with the different topic-related worlds with activities in the field of logics and mathematics, science, linguistics and tales, visual-spatial and cognitive skills, emotional intelligence, arts, and multiplayer games. This kind of material supports active learning and new pedagogical models for teachers to use in their lessons. The purpose of this paper is to explore the usage of the platform in three pilot groups schools from different regions of Spain, outlining future directions in the design of such digital materials. Usage is assessed via descriptive analysis and variance analysis, with data collected from users interacting with the intelligent platform. The results show a high use of STEM (Science, Technology, Engineering and Maths) activities among all the activities that could be chosen. Cross-curricular activities are also used. Continuation in the development of such materials is concluded necessary, focusing integration of different fields, accentuating games over quizzes, and the value of teacher training for improving their use in schools.This research was funded by Community of Madrid 'Industrial PhD grants' under project number IND2017/SOC-7874

    Gibberellins Regulate Ovule Integument Development by Interfering with the Transcription Factor ATS

    Full text link
    [EN] Gibberellins (GAs) are plant hormones that regulate most plant life cycle aspects, including flowering and fruit development. Here, we demonstrate the implication of GAs in ovule development. DELLA proteins, negative GA response regulators, act as positive factors for ovule integument development in a mechanism that involves transcription factor ABERRANT TESTA SHAPE (ATS). The seeds of the della global mutant, a complete loss-of-function of DELLA, and the ats-1 mutant are remarkably similar, with a round shape, a disorganized testa, and viviparism. These defects are the result of an alteration in integuments that fail to fully develop and are shorter than in wild-type plants. ats-1 also shows some GA-related phenotypes, for example, higher germination rates and early flowering. In fact, ats-1 has elevated GA levels due to the activation of GA biosynthesis genes, which indicates that ATS inhibits GA biosynthesis. Moreover, DELLAs and ATS proteins interact, which suggests the formation of a transcriptional complex that regulates the expression of genes involved in integument growth. Therefore, the repression of GA biosynthesis by ATS would result in the stabilization of DELLAs to ensure correct ATS-DELLA complex formation. The requirement of both activities to coordinate proper ovule development strongly argues that the ATS-DELLA complex acts as a key molecular factor. This work provides the first evidence for a role of GAs in ovule and seed development.This work was supported by grants BIO2011-26302 and BIO2014-55946 from the Spanish Ministry of Science and Innovation and the Spanish Ministry of Economy and Competitiveness, respectively, and ACOMP/2013/048 and ACOMP/2014/106 from the Generalitat Valenciana to M.A.P.-A. R.S. received a PhD fellowship from the Spanish Ministry of Science and Innovation.Gómez Jiménez, MD.; Ventimilla-Llora, D.; Sacristán Tarrazó, R.; Perez Amador, MA. (2016). Gibberellins Regulate Ovule Integument Development by Interfering with the Transcription Factor ATS. Plant Physiology. 172(4):2403-2415. doi:10.1104/pp.16.01231S24032415172

    RGL2 controls flower development, ovule number and fertility in Arabidopsis

    Full text link
    [EN] DELLA proteins are a group of plant specific GRAS proteins of transcriptional regulators that have a key role in gibberellin (GA) signaling. In Arabidopsis, the DELLA family is formed by five members. The complexity of this gene family raises the question on whether single DELLA proteins have specific or overlapping functions in the control of several GA-dependent developmental processes. To better understand the roles played by RGL2, one of the DELLA proteins in Arabidopsis, two transgenic lines that express fusion proteins of Venus-RGL2 and a dominant version of RGL2, YPet-rgl2A17, were generated by recombineering strategy using a genomic clone that contained the RGL2 gene. The dominant YPet-rg12 Delta 17 protein is not degraded by GAs, and therefore it blocks the RGL2-dependent GA signaling and hence RGL2-dependent development. The RGL2 role in seed germination was further confirmed using these genetic tools, while new functions of RGL2 in plant development were uncovered. RGL2 has a clear function in the regulation of flower development, particularly stamen growth and anther dehiscence, which has a great impact in fertility. Moreover, the increased ovule number in the YPet-rg12 Delta 17 line points out the role of RGL2 in the determination of ovule number.We wish to thank Ms. J. Yun,M.A. Argomániz for technical assistance, and the IBMCP microscopy facility. Edit Syndicate (http://www.editsyndicate.com/) provided proofreading of the manuscript. This work was supported by grants from the Spanish Ministry of Economy and Competitiveness-FEDER [BI02011-26302 and BI02014-55946] and Generalitat Valenciana [ACOMP/2013/048 and ACOMP/2014/106] to M.A.P-A. and National Science Foundation [MCB-0923727] to J.M.A. MAP-A. received a fellowship of the 'Salvador de Madariaga' program from Spanish Ministry of Science and Innovation.Gómez Jiménez, MD.; Fuster Almunia, C.; Ocaña-Cuesta, J.; Alonso, J.; Perez Amador, MA. (2019). RGL2 controls flower development, ovule number and fertility in Arabidopsis. Plant Science. 281:82-92. https://doi.org/10.1016/j.plantsci.2019.01.014S829228

    Role of the gibberellin receptors GID1 during fruit-set in Arabidopsis

    Full text link
    [EN] Gibberellins (GAs) play a critical role in fruit-set and fruit growth. Gibberellin is perceived by its nuclear receptors GA INSENSITIVE DWARF1s (GID1s), which then trigger degradation of downstream repressors DELLAs. To understand the role of the three GA receptor genes (GID1A, GID1B and GID1C) in Arabidopsis during fruit initiation, we have examined their temporal and spatial localization, in combination with analysis of mutant phenotypes. Distinct expression patterns are revealed for each GID1: GID1A is expressed throughout the whole pistil, while GID1B is expressed in ovules, and GID1C is expressed in valves. Functional study of gid1 mutant combinations confirms that GID1A plays a major role during fruit-set and growth, whereas GID1B and GID1C have specific roles in seed development and pod elongation, respectively. Therefore, in ovules, GA perception is mediated by GID1A and GID1B, while GID1A and GID1C are involved in GA perception in valves. To identify tissue-specific interactions between GID1s and DELLAs, we analyzed spatial expression patterns of four DELLA genes that have a role in fruit initiation (GAI, RGA, RGL1 and RGL2). Our data suggest that GID1A can interact with RGA and GAI in all tissues, whereas GID1C-RGL1 and GID1B-RGL2 interactions only occur in valves and ovules, respectively. These results uncover specific functions of each GID1-DELLA in the different GA-dependent processes that occur upon fruit-set. In addition, the distribution of GA receptors in valves along with lack of expression of GA biosynthesis genes in this tissue, strongly suggests transport of GAs from the developing seeds to promote fruit growth.We wish to thank Dr Masatoshi Nakajima (University of Tokyo, Japan) for providing the pGID1:GID1-GUS lines, and Dr Peter Hedden (Rothamsted Research, UK) for the pGA20ox:GA20ox-GUS lines. We also thank Ms C. Fuster and M. A. Argomaniz for technical assistance. This work has been supported by grants BIO2008-01039 and BIO2011-26302 from the Spanish Ministry of Science and Innovation and ACOMP/2010/079 and ACOMP/2011/287 from the Generalitat Valenciana for M. A. P.-A. and USDA grants 2010-65116-20460 and 2014-67013-21548 for T. P. S. C. G.-G. received a JAE PhD fellowship from the Spanish Council for Scientific Research (CSIC).Gallego Giraldo, C.; Hu, J.; Urbez Lagunas, C.; Gómez Jiménez, MD.; Sun, TP.; Perez Amador, MA. (2014). Role of the gibberellin receptors GID1 during fruit-set in Arabidopsis. Plant Journal. 79(6):1020-1032. doi:10.1111/tpj.12603S1020103279

    Molecular program of senescence in dry and fleshy fruit

    Full text link
    [EN] Fruits of angiosperms can be divided into dry and fleshy fruits, depending on their dispersal strategies. Despite their apparently different developmental programmes, researchers have attempted to compare dry and fleshy fruits to establish analogies of the distinct biochemical and physiological processes that occur. But what are the common and specific phenomena in both biological strategies? Is valve dehiscence and senescence of dry fruits comparable to final ripening of fleshy fruits, when seeds become mature and fruits are competent for seed dispersal, or to over-ripening when advanced senescence occurs? We briefly review current knowledge on dry and fleshy fruit development, which has been extensively reported recently, and is the topic of this special issue. We compare the processes taking place in Arabidopsis (dry) and tomato (fleshy) fruit during final development steps using transcriptome data to establish possible analogies. Interestingly, the transcriptomic programme of Arabidopsis silique shares little similarity in gene number to tomato fruit ripening or over-ripening. In contrast, the biological processes carried out by these common genes from ripening and over-ripening programmes are similar, as most biological processes are shared during both programmes. On the other hand, several biological terms are specific of Arabidopsis and tomato ripening, including senescence, but little or no specific processes occur during Arabidopsis and tomato over-ripening. These suggest a closer analogy between silique senescence and ripening than over-ripening, but a major common biological programme between Arabidopsis silique senescence and the last steps of tomato development, irrespective of its distinction between ripening and over-ripening.We wish to thank Dr J. Carbonell for critically reading the manuscript. We also thank Clara Pons for the preliminary tomato microarray data mining. Our work has been supported by grants BIO2008-01039 and BIO2011-26302 from the Spanish Ministry of Science and Innovation and ACOMP/2010/079, ACOMP/2011/287, and ACOMP/2013/048 from the Generalitat Valenciana.Gómez Jiménez, MD.; Vera Sirera, FJ.; Perez Amador, MA. (2014). Molecular program of senescence in dry and fleshy fruit. Journal of Experimental Botany. 65(16):4515-4526. https://doi.org/10.1093/jxb/eru093S45154526651

    Bronchiectasis-COPD Overlap Syndrome: Role of Peripheral Eosinophil Count and Inhaled Corticosteroid Treatment

    Full text link
    Both chronic obstructive pulmonary disease and bronchiectasis are highly prevalent diseases. In both cases, inhaled corticosteroids (ICs) are associated with a decrease in exacerbations in patients with a high peripheral blood eosinophil count (BEC), but it is still not known what occurs in bronchiectasis-COPD overlap syndrome (BCOS). The present study aimed to assess the effect of ICs on various outcomes in patients with BCOS, according to BEC values. We undertook a post-hoc analysis of a cohort of 201 GOLD II-IV COPD patients with a long-term follow-up (median 74 [IQR: 40-106] months). All participants underwent computerized tomography and 115 (57.2%) had confirmed BCOS. A standardized clinical protocol was followed and two sputum samples were collected at each medical visit (every 3-6 months), whenever possible. During follow-up, there were 68 deaths (59.1%), and the mean rate of exacerbations and hospitalizations per year was 1.42 (1.2) and 0.57 (0.83), respectively. A total of 44.3% of the patients presented at least one pneumonic episode per year. The mean value of eosinophils was 402 (112) eosinophils/mu L, with 27 (23.5%), 63 (54.8%), and 25 patients (21.7%) presenting, respectively, less than 100, 101-300, and more than 300 eosinophils/mu L. A total of 84 patients (73.1%) took ICs. The higher the BEC, the higher the annual rate of exacerbations and hospitalizations. Patients with less than 100 eosinophils/mu L presented more infectious events (incident exacerbations, pneumonic episodes, and chronic bronchial infection via pathogenic bacteria). Only those patients with eosinophilia (>300 eosinophils/mu L) treated with ICs decreased the number (1.77 (1.2) vs. 1.08 (0.6), p < 0.001) and the severity (0.67 (0.8) vs. 0.35 (0.5), p = 0.011) of exacerbations, without any changes in the other infectious outcomes or mortality. In conclusion, ICs treatment in patients with BCOS with increased BEC decreased the number and severity of incident exacerbations without any negative influence on other infectious outcomes (incidence of pneumonia or chronic bronchial infection)

    A randomized comparison ofrepeat stenting with balloon angioplasty in patients with in-stent restenosis

    Get PDF
    AbstractObjectivesThis randomized trial compared repeat stenting with balloon angioplasty (BA) in patients with in-stent restenosis (ISR).BackgroundStent restenosis constitutes a therapeutic challenge. Repeat coronary interventions are currently used in this setting, but the recurrence risk remains high.MethodsWe randomly assigned 450 patients with ISR to elective stent implantation (224 patients) or conventional BA (226 patients). Primary end point was recurrent restenosis rate at six months. Secondary end points included minimal lumen diameter (MLD), prespecified subgroup analyses, and a composite of major adverse events.ResultsProcedural success was similar in both groups, but in-hospital complications were more frequent in the balloon group. After the procedure MLD was larger in the stent group (2.77 ± 0.4 vs. 2.25 ± 0.5 mm, p < 0.001). At follow-up, MLD was larger after stenting when the in-lesion site was considered (1.69 ± 0.8 vs. 1.54 ± 0.7 mm, p = 0.046). However, the binary restenosis rate (38% stent group, 39% balloon group) was similar with the two strategies. One-year event-free survival (follow-up 100%) was also similar in both groups (77% stent vs. 71% balloon, p = 0.19). Nevertheless, in the prespecified subgroup of patients with large vessels (≥3 mm) the restenosis rate (27% vs. 49%, p = 0.007) and the event-free survival (84% vs. 62%, p = 0.002) were better after repeat stenting.ConclusionsIn patients with ISR, repeat coronary stenting provided better initial angiographic results but failed to improve restenosis rate and clinical outcome when compared with BA. However, in patients with large vessels coronary stenting improved the long-term clinical and angiographic outcome

    Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms

    Full text link
    This is the peer reviewed version of the following article: Barro¿Trastoy, D., Carrera, E., Baños, J., Palau-Rodríguez, J., Ruiz-Rivero, O., Tornero, P., Alonso, J.M., López-Díaz, I., Gómez, M.D. and Pérez-Amador, M.A. (2020), Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms. Plant J, 102: 1026-1041, which has been published in final form at https://doi.org/10.1111/tpj.14684. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Ovule primordia formation is a complex developmental process with a strong impact on the production of seeds. In Arabidopsis this process is controlled by a gene network, including components of the signalling pathways of auxin, brassinosteroids (BRs) and cytokinins. Recently, we have shown that gibberellins (GAs) also play an important role in ovule primordia initiation, inhibiting ovule formation in both Arabidopsis and tomato. Here we reveal that BRs also participate in the control of ovule initiation in tomato, by promoting an increase on ovule primordia formation. Moreover, molecular and genetic analyses of the co-regulation by GAs and BRs of the control of ovule initiation indicate that two different mechanisms occur in tomato and Arabidopsis. In tomato, GAs act downstream of BRs. BRs regulate ovule number through the downregulation of GA biosynthesis, which provokes stabilization of DELLA proteins that will finally promote ovule primordia initiation. In contrast, in Arabidopsis both GAs and BRs regulate ovule number independently of the activity levels of the other hormone. Taken together, our data strongly suggest that different molecular mechanisms could operate in different plant species to regulate identical developmental processes even, as for ovule primordia initiation, if the same set of hormones trigger similar responses, adding a new level of complexity.We wish to thank B. Janssen (Horticulture and Food Research Institute, New Zealand) for the pBJ60 shuttle vector, C. Ferrandiz and M. Colombo (IBMCP, CSIC-UPV, Valencia, Spain) for their help in the generation of 35S:ANT lines and L.E.P. Peres (Universidade de Sao Paulo, Brazil) for the tomato mutant lines. Our thanks also go to C. Fuster for technical assistance. This work was supported by grants from the Spanish Ministry of Economy and Competitiveness-FEDER (BIO2017-83138R) to MAPA and from NSF (DBI-0820755, MCB-1158181, and IOS-1444561) to JMA.Barro-Trastoy, D.; Carrera, E.; Baños, J.; Palau-Rodríguez, J.; Ruiz-Rivero, O.; Tornero Feliciano, P.; Alonso, JM.... (2020). Regulation of ovule initiation by gibberellins and brassinosteroids in tomato and Arabidopsis: two plant species, two molecular mechanisms. The Plant Journal. 102(5):1026-1041. https://doi.org/10.1111/tpj.14684S102610411025Azhakanandam, S., Nole-Wilson, S., Bao, F., & Franks, R. G. (2008). SEUSSandAINTEGUMENTAMediate Patterning and Ovule Initiation during Gynoecium Medial Domain Development    . Plant Physiology, 146(3), 1165-1181. doi:10.1104/pp.107.114751Bai, M.-Y., Shang, J.-X., Oh, E., Fan, M., Bai, Y., Zentella, R., … Wang, Z.-Y. (2012). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology, 14(8), 810-817. doi:10.1038/ncb2546Baker, S. C., Robinson-Beers, K., Villanueva, J. M., Gaiser, J. C., & Gasser, C. S. (1997). Interactions Among Genes Regulating Ovule Development in Arabidopsis thaliana. Genetics, 145(4), 1109-1124. doi:10.1093/genetics/145.4.1109Bartrina, I., Otto, E., Strnad, M., Werner, T., & Schmülling, T. (2011). Cytokinin Regulates the Activity of Reproductive Meristems, Flower Organ Size, Ovule Formation, and Thus Seed Yield in Arabidopsis thaliana      . The Plant Cell, 23(1), 69-80. doi:10.1105/tpc.110.079079Belkhadir, Y., & Jaillais, Y. (2015). The molecular circuitry of brassinosteroid signaling. New Phytologist, 206(2), 522-540. doi:10.1111/nph.13269Bencivenga, S., Simonini, S., Benková, E., & Colombo, L. (2012). The Transcription Factors BEL1 and SPL Are Required for Cytokinin and Auxin Signaling During Ovule Development in Arabidopsis. The Plant Cell, 24(7), 2886-2897. doi:10.1105/tpc.112.100164Brumos, J., Zhao, C., Gong, Y., Soriano, D., Patel, A. P., Perez-Amador, M. A., … Alonso, J. M. (2019). An Improved Recombineering Toolset for Plants. The Plant Cell, 32(1), 100-122. doi:10.1105/tpc.19.00431Carrera, E., Ruiz-Rivero, O., Peres, L. E. P., Atares, A., & Garcia-Martinez, J. L. (2012). Characterization of the procera Tomato Mutant Shows Novel Functions of the SlDELLA Protein in the Control of Flower Morphology, Cell Division and Expansion, and the Auxin-Signaling Pathway during Fruit-Set and Development    . Plant Physiology, 160(3), 1581-1596. doi:10.1104/pp.112.204552Carvalho, R. F., Campos, M. L., Pino, L. E., Crestana, S. L., Zsögön, A., Lima, J. E., … Peres, L. E. (2011). Convergence of developmental mutants into a single tomato model system: «Micro-Tom» as an effective toolkit for plant development research. Plant Methods, 7(1). doi:10.1186/1746-4811-7-18Chory, J., Nagpal, P., & Peto, C. A. (1991). Phenotypic and Genetic Analysis of det2, a New Mutant That Affects Light-Regulated Seedling Development in Arabidopsis. The Plant Cell, 3(5), 445. doi:10.2307/3869351Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xClouse, S. D. (2011). Brassinosteroid Signal Transduction: From Receptor Kinase Activation to Transcriptional Networks Regulating Plant Development. The Plant Cell, 23(4), 1219-1230. doi:10.1105/tpc.111.084475Cucinotta, M., Colombo, L., & Roig-Villanova, I. (2014). Ovule development, a new model for lateral organ formation. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00117Cucinotta, M., Manrique, S., Guazzotti, A., Quadrelli, N. E., Mendes, M. A., Benkova, E., & Colombo, L. (2016). Cytokinin response factors integrate auxin and cytokinin pathways for female reproductive organ development. Development. doi:10.1242/dev.143545Davière, J.-M., & Achard, P. (2016). A Pivotal Role of DELLAs in Regulating Multiple Hormone Signals. Molecular Plant, 9(1), 10-20. doi:10.1016/j.molp.2015.09.011De Vleesschauwer, D., Van Buyten, E., Satoh, K., Balidion, J., Mauleon, R., Choi, I.-R., … Höfte, M. (2012). Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice      . Plant Physiology, 158(4), 1833-1846. doi:10.1104/pp.112.193672Dorcey, E., Urbez, C., Blázquez, M. A., Carbonell, J., & Perez-Amador, M. A. (2009). Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in Arabidopsis. The Plant Journal, 58(2), 318-332. doi:10.1111/j.1365-313x.2008.03781.xFujioka, S., Li, J., Choi, Y. H., Seto, H., Takatsuto, S., Noguchi, T., … Sakurai, A. (1997). The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. The Plant Cell, 9(11), 1951-1962. doi:10.1105/tpc.9.11.1951Galbiati, F., Sinha Roy, D., Simonini, S., Cucinotta, M., Ceccato, L., Cuesta, C., … Colombo, L. (2013). An integrative model of the control of ovule primordia formation. The Plant Journal, 76(3), 446-455. doi:10.1111/tpj.12309Gallego-Bartolome, J., Minguet, E. G., Grau-Enguix, F., Abbas, M., Locascio, A., Thomas, S. G., … Blazquez, M. A. (2012). Molecular mechanism for the interaction between gibberellin and brassinosteroid signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences, 109(33), 13446-13451. doi:10.1073/pnas.1119992109García-Hurtado, N., Carrera, E., Ruiz-Rivero, O., López-Gresa, M. P., Hedden, P., Gong, F., & García-Martínez, J. L. (2012). The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. Journal of Experimental Botany, 63(16), 5803-5813. doi:10.1093/jxb/ers229Gleave, A. P. (1992). A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Molecular Biology, 20(6), 1203-1207. doi:10.1007/bf00028910Gomez, M. D., Ventimilla, D., Sacristan, R., & Perez-Amador, M. A. (2016). Gibberellins Regulate Ovule Integument Development by Interfering with the Transcription Factor ATS. Plant Physiology, 172(4), 2403-2415. doi:10.1104/pp.16.01231He, J.-X., Gendron, J. M., Sun, Y., Gampala, S. S. L., Gendron, N., Sun, C. Q., & Wang, Z.-Y. (2005). BZR1 Is a Transcriptional Repressor with Dual Roles in Brassinosteroid Homeostasis and Growth Responses. Science, 307(5715), 1634-1638. doi:10.1126/science.1107580Huang, H.-Y., Jiang, W.-B., Hu, Y.-W., Wu, P., Zhu, J.-Y., Liang, W.-Q., … Lin, W.-H. (2013). BR Signal Influences Arabidopsis Ovule and Seed Number through Regulating Related Genes Expression by BZR1. Molecular Plant, 6(2), 456-469. doi:10.1093/mp/sss070Kurepin, L. V., Joo, S.-H., Kim, S.-K., Pharis, R. P., & Back, T. G. (2011). Interaction of Brassinosteroids with Light Quality and Plant Hormones in Regulating Shoot Growth of Young Sunflower and Arabidopsis Seedlings. Journal of Plant Growth Regulation, 31(2), 156-164. doi:10.1007/s00344-011-9227-7Li, Q.-F., Wang, C., Jiang, L., Li, S., Sun, S. S. M., & He, J.-X. (2012). An Interaction Between BZR1 and DELLAs Mediates Direct Signaling Crosstalk Between Brassinosteroids and Gibberellins in Arabidopsis. Science Signaling, 5(244). doi:10.1126/scisignal.2002908Li, X.-J., Chen, X.-J., Guo, X., Yin, L.-L., Ahammed, G. J., Xu, C.-J., … Yu, J.-Q. (2015). DWARFoverexpression induces alteration in phytohormone homeostasis, development, architecture and carotenoid accumulation in tomato. Plant Biotechnology Journal, 14(3), 1021-1033. doi:10.1111/pbi.12474Liu, Z., Franks, R. G., & Klink, V. P. (2000). Regulation of Gynoecium Marginal Tissue Formation by LEUNIG and AINTEGUMENTA. The Plant Cell, 12(10), 1879-1891. doi:10.1105/tpc.12.10.1879Marti, E. (2006). Genetic and physiological characterization of tomato cv. Micro-Tom. Journal of Experimental Botany, 57(9), 2037-2047. doi:10.1093/jxb/erj154Mizukami, Y., & Fischer, R. L. (2000). Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis. Proceedings of the National Academy of Sciences, 97(2), 942-947. doi:10.1073/pnas.97.2.942Montoya, T., Nomura, T., Yokota, T., Farrar, K., Harrison, K., Jones, J. G. D., … Bishop, G. J. (2005). Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. The Plant Journal, 42(2), 262-269. doi:10.1111/j.1365-313x.2005.02376.xMüller, C. J., Larsson, E., Spíchal, L., & Sundberg, E. (2017). Cytokinin-Auxin Crosstalk in the Gynoecial Primordium Ensures Correct Domain Patterning. Plant Physiology, 175(3), 1144-1157. doi:10.1104/pp.17.00805Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.xOlimpieri, I., Siligato, F., Caccia, R., Soressi, G. P., Mazzucato, A., Mariotti, L., & Ceccarelli, N. (2007). Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta, 226(4), 877-888. doi:10.1007/s00425-007-0533-zPaz-Ares, J., & The REGIA Consortium. (2002). REGIA, An EU Project on Functional Genomics of Transcription Factors fromArabidopsis thaliana. Comparative and Functional Genomics, 3(2), 102-108. doi:10.1002/cfg.146Peng, J., Carol, P., Richards, D. E., King, K. E., Cowling, R. J., Murphy, G. P., & Harberd, N. P. (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses . Genes & Development, 11(23), 3194-3205. doi:10.1101/gad.11.23.3194Reyes-Olalde, J. I., Zuñiga-Mayo, V. M., Chávez Montes, R. A., Marsch-Martínez, N., & de Folter, S. (2013). Inside the gynoecium: at the carpel margin. Trends in Plant Science, 18(11), 644-655. doi:10.1016/j.tplants.2013.08.002Sabelli, P. A., & Larkins, B. A. (2009). The Development of Endosperm in Grasses. Plant Physiology, 149(1), 14-26. doi:10.1104/pp.108.129437Schneitz, K., Baker, S. C., Gasser, C. S., & Redweik, A. (1998). Pattern formation and growth during floral organogenesis: HUELLENLOS and AINTEGUMENTA are required for the formation of the proximal region of the ovule primordium in Arabidopsis thaliana. Development, 125(14), 2555-2563. doi:10.1242/dev.125.14.2555Schneitz, K., Hulskamp, M., & Pruitt, R. E. (1995). Wild-type ovule development in Arabidopsis thaliana: a light microscope study of cleared whole-mount tissue. The Plant Journal, 7(5), 731-749. doi:10.1046/j.1365-313x.1995.07050731.xSeo, M., Jikumaru, Y., & Kamiya, Y. (2011). Profiling of Hormones and Related Metabolites in Seed Dormancy and Germination Studies. Methods in Molecular Biology, 99-111. doi:10.1007/978-1-61779-231-1_7Serrani, J. C., Sanjuán, R., Ruiz-Rivero, O., Fos, M., & García-Martínez, J. L. (2007). Gibberellin Regulation of Fruit Set and Growth in Tomato. Plant Physiology, 145(1), 246-257. doi:10.1104/pp.107.098335Serrani, J. C., Carrera, E., Ruiz-Rivero, O., Gallego-Giraldo, L., Peres, Lá. E. P., & García-Martínez, J. L. (2010). Inhibition of Auxin Transport from the Ovary or from the Apical Shoot Induces Parthenocarpic Fruit-Set in Tomato Mediated by Gibberellins    . Plant Physiology, 153(2), 851-862. doi:10.1104/pp.110.155424Sun, T. (2010). Gibberellin-GID1-DELLA: A Pivotal Regulatory Module for Plant Growth and Development. Plant Physiology, 154(2), 567-570. doi:10.1104/pp.110.161554Sun, T. (2011). The Molecular Mechanism and Evolution of the GA–GID1–DELLA Signaling Module in Plants. Current Biology, 21(9), R338-R345. doi:10.1016/j.cub.2011.02.036Tanaka, K., Nakamura, Y., Asami, T., Yoshida, S., Matsuo, T., & Okamoto, S. (2003). Physiological Roles of Brassinosteroids in Early Growth of Arabidopsis: Brassinosteroids Have a Synergistic Relationship with Gibberellin as well as Auxin in Light-Grown Hypocotyl Elongation. Journal of Plant Growth Regulation, 22(3), 259-271. doi:10.1007/s00344-003-0119-3Tang, Y., Liu, H., Guo, S., Wang, B., Li, Z., Chong, K., & Xu, Y. (2017). OsmiR396d Affects Gibberellin and Brassinosteroid Signaling to Regulate Plant Architecture in Rice. Plant Physiology, 176(1), 946-959. doi:10.1104/pp.17.00964Tong, H., Xiao, Y., Liu, D., Gao, S., Liu, L., Yin, Y., … Chu, C. (2014). Brassinosteroid Regulates Cell Elongation by Modulating Gibberellin Metabolism in Rice    . The Plant Cell, 26(11), 4376-4393. doi:10.1105/tpc.114.132092Truernit, E., Bauby, H., Dubreucq, B., Grandjean, O., Runions, J., Barthélémy, J., & Palauqui, J.-C. (2008). High-Resolution Whole-Mount Imaging of Three-Dimensional Tissue Organization and Gene Expression Enables the Study of Phloem Development and Structure inArabidopsis . The Plant Cell, 20(6), 1494-1503. doi:10.1105/tpc.107.056069Tursun, B., Cochella, L., Carrera, I., & Hobert, O. (2009). A Toolkit and Robust Pipeline for the Generation of Fosmid-Based Reporter Genes in C. elegans. PLoS ONE, 4(3), e4625. doi:10.1371/journal.pone.0004625Unterholzner, S. J., Rozhon, W., Papacek, M., Ciomas, J., Lange, T., Kugler, K. G., … Poppenberger, B. (2015). Brassinosteroids Are Master Regulators of Gibberellin Biosynthesis in Arabidopsis. The Plant Cell, 27(8), 2261-2272. doi:10.1105/tpc.15.00433Wang, Z.-Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., … Chory, J. (2002). Nuclear-Localized BZR1 Mediates Brassinosteroid-Induced Growth and Feedback Suppression of Brassinosteroid Biosynthesis. Developmental Cell, 2(4), 505-513. doi:10.1016/s1534-5807(02)00153-3Xiao, H., Radovich, C., Welty, N., Hsu, J., Li, D., Meulia, T., & van der Knaap, E. (2009). Integration of tomato reproductive developmental landmarks and expression profiles, and the effect of SUN on fruit shape. BMC Plant Biology, 9(1). doi:10.1186/1471-2229-9-49Xiao, Y., Liu, D., Zhang, G., Tong, H., & Chu, C. (2017). Brassinosteroids Regulate OFP1, a DLT Interacting Protein, to Modulate Plant Architecture and Grain Morphology in Rice. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.0169
    corecore