4,829 research outputs found
Solution of the quantum harmonic oscillator plus a delta-function potential at the origin: The oddness of its even-parity solutions
We derive the energy levels associated with the even-parity wave functions of
the harmonic oscillator with an additional delta-function potential at the
origin. Our results bring to the attention of students a non-trivial and
analytical example of a modification of the usual harmonic oscillator
potential, with emphasis on the modification of the boundary conditions at the
origin. This problem calls the attention of the students to an inaccurate
statement in quantum mechanics textbooks often found in the context of solution
of the harmonic oscillator problem.Comment: 9 pages, 3 figure
Dynamical polarizability of graphene beyond the Dirac cone approximation
We compute the dynamical polarizability of graphene beyond the usual Dirac
cone approximation, integrating over the full Brillouin zone. We find
deviations at ( the hopping parameter) which amount to a
logarithmic singularity due to the van Hove singularity and derive an
approximate analytical expression. Also at low energies, we find deviations
from the results obtained from the Dirac cone approximation which manifest
themselves in a peak spitting at arbitrary direction of the incoming wave
vector \q. Consequences for the plasmon spectrum are discussed.Comment: 8 pages, 6 figure
No directed fractal percolation in zero area
We show that fractal (or "Mandelbrot") percolation in two dimensions produces
a set containing no directed paths, when the set produced has zero area. This
improves a similar result by the first author in the case of constant retention
probabilities to the case of retention probabilities approaching 1
Charge and Spin Transport in the One-dimensional Hubbard Model
In this paper we study the charge and spin currents transported by the
elementary excitations of the one-dimensional Hubbard model. The corresponding
current spectra are obtained by both analytic methods and numerical solution of
the Bethe-ansatz equations. For the case of half-filling, we find that the
spin-triplet excitations carry spin but no charge, while charge -spin
triplet excitations carry charge but no spin, and both spin-singlet and charge
-spin-singlet excitations carry neither spin nor charge currents.Comment: 24 pages, 14 figure
Inducing energy gaps in graphene monolayer and bilayer
In this paper we propose a mechanism for the induction of energy gaps in the
spectrum of graphene and its bilayer, when both these materials are covered
with water and ammonia molecules. The energy gaps obtained are within the range
20-30 meV, values compatible to those found in experimental studies of graphene
bilayer. We further show that the binding energies are large enough for the
adsorption of the molecules to be maintained even at room temperature
Minimal optimal generalized quantum measurements
Optimal and finite positive operator valued measurements on a finite number
of identically prepared systems have been presented recently. With physical
realization in mind we propose here optimal and minimal generalized quantum
measurements for two-level systems.
We explicitly construct them up to N=7 and verify that they are minimal up to
N=5. We finally propose an expression which gives the size of the minimal
optimal measurements for arbitrary .Comment: 9 pages, Late
An obstruction based approach to the Kochen-Specker theorem
In [1] it was shown that the Kochen Specker theorem can be written in terms
of the non-existence of global elements of a certain varying set over the
partially ordered set of boolean subalgebras of projection operators on some
Hilbert space. In this paper, we show how obstructions to the construction of
such global elements arise, and how this provides a new way of looking at
proofs of the theorem.Comment: 14 pages, 6 figure
Speakable in Quantum Mechanics
At the 1927 Como conference Bohr spoke the now famous words "It is wrong to
think that the task of physics is to find out how nature is. Physics concerns
what we can say about nature." However, if the Copenhagen interpretation really
holds on to this motto, why then is there this feeling of conflict when
comparing it with realist interpretations? Surely what one can say about nature
should in a certain sense be interpretation independent. In this paper I take
Bohr's motto seriously and develop a quantum logic that avoids assuming any
form of realism as much as possible. To illustrate the non-triviality of this
motto a similar result is first derived for classical mechanics. It turns out
that the logic for classical mechanics is a special case of the derived quantum
logic. Finally, some hints are provided in how these logics are to be used in
practical situations and I discuss how some realist interpretations relate to
these logics
- …