38,020 research outputs found

    Adittional levels between Landau bands due to vacancies in graphene: towards a defect engineering

    Get PDF
    We describe the effects of vacancies on the electronic properties of a graphene sheet in the presence of a perpendicular magnetic field: from a single defect to an organized vacancy lattice. An isolated vacancy is the minimal possible inner edge, showing an antidotlike behaviour, which results in an extra level between consecutive Landau levels. Two close vacancies may couple to each other, forming a vacancy molecule tuned by the magnetic field. We show that a vacancy lattice introduce an extra band in between Landau levels with localization properties that could lead to extra Hall resistance plateaus.Comment: 6 pages, 4 figures, few comments added after referees - accepted to publication in Phys. Rev.

    Valley polarization effects on the localization in graphene Landau levels

    Get PDF
    Effects of disorder and valley polarization in graphene are investigated in the quantum Hall regime. We find anomalous localization properties for the lowest Landau level (LL), where disorder can induce wavefunction delocalization (instead of localization), both for white-noise and gaussian-correlated disorder. We quantitatively identify the contribution of each sublattice to wavefunction amplitudes. Following the valley (sublattice) polarization of states within LLs for increasing disorder we show: (i) valley mixing in the lowest LL is the main effect behind the observed anomalous localization properties, (ii) the polarization suppression with increasing disorder depends on the localization for the white-noise model, while, (iii) the disorder induces a partial polarization in the higher Landau levels for both disorder models.Comment: 5 pages, 6 figures, extended version, with 2 new figures adde

    Inner and outer edge states in graphene rings: A numerical investigation

    Full text link
    We numerically investigate quantum rings in graphene and find that their electronic properties may be strongly influenced by the geometry, the edge symmetries and the structure of the corners. Energy spectra are calculated for different geometries (triangular, hexagonal and rhombus-shaped graphene rings) and edge terminations (zigzag, armchair, as well as the disordered edge of a round geometry). The states localized at the inner edges of the graphene rings describe different evolution as a function of magnetic field when compared to those localized at the outer edges. We show that these different evolutions are the reason for the formation of sub-bands of edge states energy levels, separated by gaps (anticrossings). It is evident from mapping the charge densities that the anticrossings occur due to the coupling between inner and outer edge states.Comment: 8 pages, 7 figures. Figures in low resolution due to size requirements - higher quality figures on reques

    Resonant tunneling through protected quantum dots at phosphorene edges

    Full text link
    We theoretically investigate phosphorene zigzag nanorribons as a platform for constriction engineering. In the presence of a constriction at the upper edge, quantum confinement of edge protected states reveals resonant tunnelling Breit-Wigner transmission peaks, if the upper edge is uncoupled to the lower edge. Coupling between edges in thin constrictions gives rise to Fano-like and anti-resonances in the transmission spectrum of the system.Comment: 8 pages,7 figure

    Third edge for a graphene nanoribbon: A tight-binding model calculation

    Full text link
    The electronic and transport properties of an extended linear defect embedded in a zigzag nanoribbon of realistic width are studied, within a tight binding model approach. Our results suggest that such defect profoundly modify the properties of the nanoribbon, introducing new conductance quantization values and modifying the conductance quantization thresholds. The linear defect along the nanoribbon behaves as an effective third edge of the system, which shows a metallic behavior, giving rise to new conduction pathways that could be used in nanoscale circuitry as a quantum wire.Comment: 6 pages, 6 figures. Two new figures and a few references adde

    Religious leaders\u27 perceptions of advance care planning: a secondary analysis of interviews with Buddhist, Christian, Hindu, Islamic, Jewish, Sikh and Bahai leaders

    Get PDF
    Background: International guidance for advance care planning (ACP) supports the integration of spiritual and religious aspects of care within the planning process. Religious leaders’ perspectives could improve how ACP programs respect patients’ faith backgrounds. This study aimed to examine: (i) how religious leaders understand and consider ACP and its implications, including (ii) how religion affects followers’ approaches to end-of-life care and ACP, and (iii) their implications for healthcare. Methods: Interview transcripts from a primary qualitative study conducted with religious leaders to inform an ACP website, ACPTalk, were used as data in this study. ACPTalk aims to assist health professionals conduct sensitive conversations with people from different religious backgrounds. A qualitative secondary analysis conducted on the interview transcripts focussed on religious leaders’ statements related to this study’s aims. Interview transcripts were thematically analysed using an inductive, comparative, and cyclical procedure informed by grounded theory. Results: Thirty-five religious leaders (26 male; mean 58.6-years-old), from eight Christian and six non-Christian (Jewish, Buddhist, Islamic, Hindu, Sikh, Bahá’í) backgrounds were included. Three themes emerged which focussed on: religious leaders’ ACP understanding and experiences; explanations for religious followers’ approaches towards end-of-life care; and health professionals’ need to enquire about how religion matters. Most leaders had some understanding of ACP and, once fully comprehended, most held ACP in positive regard. Religious followers’ preferences for end-of-life care reflected family and geographical origins, cultural traditions, personal attitudes, and religiosity and faith interpretations. Implications for healthcare included the importance of avoiding generalisations and openness to individualised and/ or standardised religious expressions of one’s religion. Conclusions: Knowledge of religious beliefs and values around death and dying could be useful in preparing health professionals for ACP with patients from different religions but equally important is avoidance of assumptions. Community-based initiatives, programs and faith settin

    Torsion and Gravitation: A new view

    Full text link
    According to the teleparallel equivalent of general relativity, curvature and torsion are two equivalent ways of describing the same gravitational field. Despite equivalent, however, they act differently: whereas curvature yields a geometric description, in which the concept of gravitational force is absent, torsion acts as a true gravitational force, quite similar to the Lorentz force of electrodynamics. As a consequence, the right-hand side of a spinless-particle equation of motion (which would represent a gravitational force) is always zero in the geometric description, but not in the teleparallel case. This means essentially that the gravitational coupling prescription can be minimal only in the geometric case. Relying on this property, a new gravitational coupling prescription in the presence of curvature and torsion is proposed. It is constructed in such a way to preserve the equivalence between curvature and torsion, and its basic property is to be equivalent with the usual coupling prescription of general relativity. According to this view, no new physics is connected with torsion, which appears as a mere alternative to curvature in the description of gravitation. An application of this formulation to the equations of motion of both a spinless and a spinning particle is madeComment: To appear on IJMP
    • …
    corecore