39,610 research outputs found
Quantized fields and gravitational particle creation in f(R) expanding universes
The problem of cosmological particle creation for a spatially flat,
homogeneous and isotropic Universes is discussed in the context of f(R)
theories of gravity. Different from cosmological models based on general
relativity theory, it is found that a conformal invariant metric does not
forbid the creation of massless particles during the early stages (radiation
era) of the Universe.Comment: 14 pages, 2 figure
Phantom Accretion by Black Holes and the Generalized Second Law of Thermodynamics
The accretion of a phantom fluid with non-zero chemical potential by black
holes is discussed with basis on the Generalized Second Law of thermodynamics.
For phantom fluids with positive temperature and negative chemical potential we
demonstrate that the accretion process is possible, and that the condition
guaranteeing the positiveness of the phantom fluid entropy coincides with the
one required by Generalized Second Law. In particular, this result provides a
complementary confirmation that cosmological phantom fluids do not need to have
negative temperatures
Conformal and gauge invariant spin-2 field equations
Using an approach based on the Casimir operators of the de Sitter group, the
conformal invariant equations for a fundamental spin-2 field are obtained, and
their consistency discussed. It is shown that, only when the spin-2 field is
interpreted as a 1-form assuming values in the Lie algebra of the translation
group, rather than a symmetric second-rank tensor, the field equation is both
conformal and gauge invariant.Comment: 12 pages, no figures; accepted for publication in Gravitation &
Cosmolog
Boundary versus bulk behavior of time-dependent correlation functions in one-dimensional quantum systems
We study the influence of reflective boundaries on time-dependent responses
of one-dimensional quantum fluids at zero temperature beyond the low-energy
approximation. Our analysis is based on an extension of effective mobile
impurity models for nonlinear Luttinger liquids to the case of open boundary
conditions. For integrable models, we show that boundary autocorrelations
oscillate as a function of time with the same frequency as the corresponding
bulk autocorrelations. This frequency can be identified as the band edge of
elementary excitations. The amplitude of the oscillations decays as a power law
with distinct exponents at the boundary and in the bulk, but boundary and bulk
exponents are determined by the same coupling constant in the mobile impurity
model. For nonintegrable models, we argue that the power-law decay of the
oscillations is generic for autocorrelations in the bulk, but turns into an
exponential decay at the boundary. Moreover, there is in general a nonuniversal
shift of the boundary frequency in comparison with the band edge of bulk
excitations. The predictions of our effective field theory are compared with
numerical results obtained by time-dependent density matrix renormalization
group (tDMRG) for both integrable and nonintegrable critical spin- chains
with , and .Comment: 20 pages, 12 figure
Upper bound for the conductivity of nanotube networks
Films composed of nanotube networks have their conductivities regulated by
the junction resistances formed between tubes. Conductivity values are enhanced
by lower junction resistances but should reach a maximum that is limited by the
network morphology. By considering ideal ballistic-like contacts between
nanotubes we use the Kubo formalism to calculate the upper bound for the
conductivity of such films and show how it depends on the nanotube
concentration as well as on their aspect ratio. Highest measured conductivities
reported so far are approaching this limiting value, suggesting that further
progress lies with nanowires other than nanotubes.Comment: 3 pages, 1 figure. Minor changes. Accepted for publication in Applied
Physics Letter
Experimental and theoretical evidences for the ice regime in planar artificial spin ices
In this work, we explore a kind of geometrical effect in the thermodynamics
of artificial spin ices (ASI). In general, such artificial materials are
athermal. Here, We demonstrate that geometrically driven dynamics in ASI can
open up the panorama of exploring distinct ground states and thermally magnetic
monopole excitations. It is shown that a particular ASI lattice will provide a
richer thermodynamics with nanomagnet spins experiencing less restriction to
flip precisely in a kind of rhombic lattice. This can be observed by analysis
of only three types of rectangular artificial spin ices (RASI). Denoting the
horizontal and vertical lattice spacings by a and b, respectively, then, a RASI
material can be described by its aspect ratio =a/b. The rhombic lattice
emerges when =. So, by comparing the impact of thermal
effects on the spin flips in these three appropriate different RASI arrays, it
is possible to find a system very close to the ice regime
Influência do espaçamento na produção volumétrica e qualidade da madeira de Mimosa scabrella Benth. e Eucalyptus viminalis Labill.
bitstream/item/101160/1/PA-1983-Ahrens-InfluenciaEspacamentoProducao.pdf.pd
- …