2,428 research outputs found
The BaBar Event Building and Level-3 Trigger Farm Upgrade
The BaBar experiment is the particle detector at the PEP-II B-factory
facility at the Stanford Linear Accelerator Center. During the summer shutdown
2002 the BaBar Event Building and Level-3 trigger farm were upgraded from 60
Sun Ultra-5 machines and 100MBit/s Ethernet to 50 Dual-CPU 1.4GHz Pentium-III
systems with Gigabit Ethernet. Combined with an upgrade to Gigabit Ethernet on
the source side and a major feature extraction software speedup, this pushes
the performance of the BaBar event builder and L3 filter to 5.5kHz at current
background levels, almost three times the original design rate of 2kHz. For our
specific application the new farm provides 8.5 times the CPU power of the old
system.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, 4 pages, 1 eps figure, PSN MOGT00
Factoring in a Dissipative Quantum Computer
We describe an array of quantum gates implementing Shor's algorithm for prime
factorization in a quantum computer. The array includes a circuit for modular
exponentiation with several subcomponents (such as controlled multipliers,
adders, etc) which are described in terms of elementary Toffoli gates. We
present a simple analysis of the impact of losses and decoherence on the
performance of this quantum factoring circuit. For that purpose, we simulate a
quantum computer which is running the program to factor N = 15 while
interacting with a dissipative environment. As a consequence of this
interaction randomly selected qubits may spontaneously decay. Using the results
of our numerical simulations we analyze the efficiency of some simple error
correction techniques.Comment: plain tex, 18 pages, 8 postscript figure
Dynamical quenching and annealing in self-organization multiagent models
We study the dynamics of a generalized Minority Game (GMG) and of the Bar
Attendance Model (BAM) in which a number of agents self-organize to match an
attendance that is fixed externally as a control parameter. We compare the
usual dynamics used for the Minority Game with one for the BAM that makes a
better use of the available information. We study the asymptotic states reached
in both frameworks. We show that states that can be assimilated to either
thermodynamic equilibrium or quenched configurations can appear in both models,
but with different settings. We discuss the relevance of the parameter that
measures the value of the prize for winning in units of the fine for losing. We
also provide an annealing protocol by which the quenched configurations of the
GMG can progressively be modified to reach an asymptotic equlibrium state that
coincides with the one obtained with the BAM.Comment: around 20 pages, 10 figure
Thermal treatment of the minority game
We study a cost function for the aggregate behavior of all the agents
involved in the Minority Game (MG) or the Bar Attendance Model (BAM). The cost
function allows to define a deterministic, synchronous dynamics that yields
results that have the main relevant features than those of the probabilistic,
sequential dynamics used for the MG or the BAM. We define a temperature through
a Langevin approach in terms of the fluctuations of the average attendance. We
prove that the cost function is an extensive quantity that can play the role of
an internal energy of the many agent system while the temperature so defined is
an intensive parameter. We compare the results of the thermal perturbation to
the deterministic dynamics and prove that they agree with those obtained with
the MG or BAM in the limit of very low temperature.Comment: 9 pages in PRE format, 6 figure
Avaliação de genótipos de milheto para silagem no semiárido.
Objetivou-se com esta pesquisa avaliar o rendimento forrageiro, as características agronômicas e morfométricas das plantas e as perdas, perfil fermentativo e composição bromatológica de silagens de genótipos de milheto. Para avaliação das características agronômicas e morfométricas dos genótipos utilizou-se o delineamento experimental em blocos casualizados, com cinco repetições. Na fase de avaliação dos silos experimentais o delineamento passou a ser inteiramente casualizado, com quatro repetições. Foram testados os cultivares Sauna B, CMS 01, ADR 500, BRS 1501 e CMS 03. Não houve diferença para a PMV, PMS e MS. Os genótipos de milheto apresentaram uma média de PMV de 9.073 kg/ha no primeiro ciclo e de 10.054kg/ha na rebrota. Quanto à lâmina foliar e a produção de colmo não houve iferença em ambos os cortes. Os teores médios de AL variaram de 1,98 a 5,17%, para os genótipos SAUNA B e CMS 01, respectivamente. Para os teores de PB verificou-se efeito significativo entre os genótipos estudados, com valores variando de 11,56 a 7,90%. Os genótipos estudados se equivaleram tanto na avaliação das plantas como na avaliação das silagens, podendo ser utilizados como uma alternativa forrageira em regiões semiáridas
Recent advances on information transmission and storage assisted by noise
The interplay between nonlinear dynamic systems and noise has proved to be of
great relevance in several application areas. In this presentation, we focus on
the areas of information transmission and storage. We review some recent
results on information transmission through nonlinear channels assisted by
noise. We also present recent proposals of memory devices in which noise plays
an essential role. Finally, we discuss new results on the influence of noise in
memristors.Comment: To be published in "Theory and Applications of Nonlinear Dynamics:
Model and Design of Complex Systems", Proceedings of ICAND 2012 (Springer,
2014
Effect of Trends on Detrended Fluctuation Analysis
Detrended fluctuation analysis (DFA) is a scaling analysis method used to
estimate long-range power-law correlation exponents in noisy signals. Many
noisy signals in real systems display trends, so that the scaling results
obtained from the DFA method become difficult to analyze. We systematically
study the effects of three types of trends -- linear, periodic, and power-law
trends, and offer examples where these trends are likely to occur in real data.
We compare the difference between the scaling results for artificially
generated correlated noise and correlated noise with a trend, and study how
trends lead to the appearance of crossovers in the scaling behavior. We find
that crossovers result from the competition between the scaling of the noise
and the ``apparent'' scaling of the trend. We study how the characteristics of
these crossovers depend on (i) the slope of the linear trend; (ii) the
amplitude and period of the periodic trend; (iii) the amplitude and power of
the power-law trend and (iv) the length as well as the correlation properties
of the noise. Surprisingly, we find that the crossovers in the scaling of noisy
signals with trends also follow scaling laws -- i.e. long-range power-law
dependence of the position of the crossover on the parameters of the trends. We
show that the DFA result of noise with a trend can be exactly determined by the
superposition of the separate results of the DFA on the noise and on the trend,
assuming that the noise and the trend are not correlated. If this superposition
rule is not followed, this is an indication that the noise and the superimposed
trend are not independent, so that removing the trend could lead to changes in
the correlation properties of the noise.Comment: 20 pages, 16 figure
- …
