3 research outputs found

    Interactions rotor-stator en turbine : Ă©tude de l'effet potentiel remontant

    No full text
    Turbomachinery designers wish to reduce the size and weight of engines. One way of achieving this is by reducing the distance between rotor and stator elements. In doing so, the rotor-stator interaction becomes more significant. In particular, the long-range influence of pressure potential is no longer negligible, and affects both upstream and downstream flow. Previously, only downstream interactions of blade wakes were considered important. Here we examine the upstream potential effect generated by downstream moving cylindrical rods on an upstream low pressure turbine blade. A large scale rectilinear blade cascade was constructed to improve access to the boundary layer. The Reynolds number, based on the chord, was 1.6 × 105. Pressure measurements and two-dimensional Laser Doppler Anemometry around the blade were performed to study the boundary layer behavior. Recorded data points are phase averaged with the downstream moving cylindrical rods. A grid is placed upstream of the blade cascade to increase the inlet turbulence intensity. A numerical investigation, based on a laminar simulation with low velocity preconditioning method was carried out on the same configuration. The flow streamlines and the pressure distribution around the blade were found to depend strongly on the downstream rod position. No unsteady effects in the boundary layer of the pressure side were observed, for the inlet turbulence intensities used in our study. Steady experimental results revealed a boundary layer separation bubble on the blade suction side at a low turbulence intensity (Tu−in = 1.2%), whereas the boundary layer became turbulent via by-pass transition at a higher turbulence intensity (Tu−in = 4.2%).It is seen that, in the unsteady configuration, at a low turbulence intensity (Tu−in =1.8%), the laminar boundary layer experiences separation once per rod period. Two transition modes were identified that alternate during a rod period : a separation transition mode and a by-pass mode, which were conditioned by the downstream rod position. Ata higher turbulence intensity (Tu−in = 4.0%), no boundary layer separation occurred thereby following a bypass transition mode during an entire rod period. The experimental results presented here demonstrate the large influence of the downstream potential effect generated by a downstream row on the upstream blade boundary layer behavior. In order to improve the efficiency of engines, this effect and its interaction with the wake effect must be taken into account in turbomachinery design.L'Ă©coulement dans les turbomachines est tri-dimensionnel et instationnaire. Actuellement, les concepteurs de moteurs cherchent Ă  rĂ©duire l'encombrement et le poids des machines. En consĂ©quence, les interactions entre les roues, appelĂ©es interactions rotor-stator, sont renforcĂ©es. Parmi elles, l'effet potentiel remontant n'est dĂ©sormais plus nĂ©gligeable malgrĂ© sa rapide attĂ©nuation spatiale. Dans cette Ă©tude, cet effet potentiel remontant a Ă©tĂ© analysĂ© sur une configuration spĂ©cialement conçue : une grille linĂ©aire d'aubes de turbine, suivie de barreaux dĂ©filants en aval Ă  une distance de 20% de corde axiale, simulant des aubes de rotor en aval. La grande Ă©chelle du banc d'essais facilite l'Ă©tude du comportement de la couche limite des aubes de la grille. Des mesures de pression et d'anĂ©momĂ©trie laser Ă  deux composantes, synchronisĂ©es avec le dĂ©filement des barreaux aval sont rĂ©alisĂ©es. Le nombre de Reynolds, basĂ© sur la corde, est 1.6 × 105. Une grille de turbulence placĂ©e en amont de la grille d'Aube afin de pouvoir augmenter le taux de turbulence amont a Ă©tĂ© utilisĂ©e. Des rĂ©sultats de mesures en absence de cette grille (faible taux de turbulence amont) sont Ă©galement prĂ©sentĂ©s et analysĂ©s. Une modĂ©lisation numĂ©rique, basĂ©e sur un calcul laminaire avec un prĂ©conditionnement basse vitesse pour la mĂȘme configuration, a montrĂ© la dĂ©formation des lignes de courant de l'Ă©coulement dans le canal inter-aubes, en fonction de la position du barreau aval. La distribution de pression autour de l'aube est Ă©galement pĂ©riodiquement modifiĂ©e. Les rĂ©sultats stationnaires expĂ©rimentaux, en absence de tout barreau aval, ont rĂ©vĂ©lĂ© un dĂ©collement de la couche limite Ă  l'extrados de l'aube Ă  bas taux de turbulence amont(Tu−am = 1.2%) qui est supprimĂ© Ă  haut taux de turbulence amont (Tu−am = 4.2%) ; la couche limite commence alors sa transition par un mode by-pass. Aucun effet instationnaire dans la couche limite n'a Ă©tĂ© observĂ© Ă  l'intrados, quel que soit le taux de turbulence amont. L'Ă©tude instationnaire, avec le dĂ©filement des barreaux en aval, a permis de mettre en Ă©vidence un dĂ©collement pĂ©riodique de la couche limite Ă  l'extrados Ă  bas taux de turbulence amont (Tu−am = 1.8%). Dans ce cas, la couche limite suit deux modes de transition au cours d'une pĂ©riode : une transition par dĂ©collement et une transition bypass. Au contraire, dans le cas Ă  fort taux de turbulence amont (Tu−am = 4.0%), aucun dĂ©collement de la couche limite n'a Ă©tĂ© dĂ©celĂ©. La couche limite est sujette Ă  l'effet instationnaire Ă  l'extrados. Elle est devenue turbulente au bord de fuite Ă  tout instant par un mode by-pass. Cette Ă©tude a montrĂ© que l'effet potentiel issu d'un roue en aval est du mĂȘme ordre de grandeur que les effets de sillage et doit ĂȘtre pris en compte dans l'analyse des phĂ©nomĂšnes. Par des mĂ©thodes d'indexation de roues, le dĂ©collement de la couche limite pourrait ĂȘtre supprimĂ©

    Interactions rotor-stator en turbine (Ă©tude de l'effet potentiel remontant)

    No full text
    L Ă©coulement dans les turbomachines est tri-dimensionnel et instationnaire. Actuellement, les concepteurs de moteurs cherchent Ă  rĂ©duire l encombrement et le poids des machines. En consĂ©quence, les interactions entre les roues, appelĂ©es interactions rotor-stator, sont renforcĂ©es. Parmi elles, l effet potentiel remontant n est dĂ©sormais plus nĂ©gligeable malgrĂ© sa rapide attĂ©nuation spatiale. Dans cette Ă©tude, cet effet potentiel remontant a Ă©tĂ© analysĂ© sur une configuration spĂ©cialement conçue : une grille linĂ©aire d aubes de turbine, suivie de barreaux dĂ©filants en aval Ă  une distance de 20% de corde axiale, simulant des aubes de rotor en aval. La grande Ă©chelle du banc d essais facilite l Ă©tude du comportement de la couche limite des aubes de la grille. Des mesures de pression et d anĂ©momĂ©trie laser Ă  deux composantes, synchronisĂ©es avec le dĂ©filement des barreaux aval sont rĂ©alisĂ©es. Le nombre de Reynolds, basĂ© sur la corde, est 1.6 . 105. Une grille de turbulence placĂ©e en amont de la grille d Aube afin de pouvoir augmenter le taux de turbulence amont a Ă©tĂ© utilisĂ©e. Des rĂ©sultats de mesures en absence de cette grille (faible taux de turbulence amont) sont Ă©galement prĂ©sentĂ©s et analysĂ©s. Une modĂ©lisation numĂ©rique, basĂ©e sur un calcul laminaire avec un prĂ©conditionnement basse vitesse pour la mĂȘme configuration, a montrĂ© la dĂ©formation des lignes de courant de l Ă©coulement dans le canal inter-aubes, en fonction de la position du barreau aval. La distribution de pression autour de l aube est Ă©galement pĂ©riodiquement modifiĂ©e. Les rĂ©sultats stationnaires expĂ©rimentaux, en absence de tout barreau aval, ont rĂ©vĂ©lĂ© un dĂ©collement de la couche limite Ă  l extrados de l aube Ă  bas taux de turbulence amont(Tu am = 1.2%) qui est supprimĂ© Ă  haut taux de turbulence amont (Tu am = 4.2%) ; la couche limite commence alors sa transition par un mode by-pass. Aucun effet instationnaire dans la couche limite n a Ă©tĂ© observĂ© Ă  l intrados, quel que soit le taux de turbulence amont. L Ă©tude instationnaire, avec le dĂ©filement des barreaux en aval, a permis de mettre en Ă©vidence un dĂ©collement pĂ©riodique de la couche limite Ă  l extrados Ă  bas taux de turbulence amont (Tu am = 1.8%). Dans ce cas, la couche limite suit deux modes de transition au cours d une pĂ©riode : une transition par dĂ©collement et une transition bypass. Au contraire, dans le cas Ă  fort taux de turbulence amont (Tu am = 4.0%), aucun dĂ©collement de la couche limite n a Ă©tĂ© dĂ©celĂ©. La couche limite est sujette Ă  l effet instationnaire Ă  l extrados. Elle est devenue turbulente au bord de fuite Ă  tout instant par un mode by-pass. Cette Ă©tude a montrĂ© que l effet potentiel issu d un roue en aval est du mĂȘme ordre de grandeur que les effets de sillage et doit ĂȘtre pris en compte dans l analyse des phĂ©nomĂšnes. Par des mĂ©thodes d indexation de roues, le dĂ©collement de la couche limite pourrait ĂȘtre supprimĂ©.Turbomachinery designers wish to reduce the size and weight of engines. One way of achieving this is by reducing the distance between rotor and stator elements. In doing so, the rotor-stator interaction becomes more significant. In particular, the long-range influence of pressure potential is no longer negligible, and affects both upstream and downstream flow. Previously, only downstream interactions of blade wakes were considered important. Here we examine the upstream potential effect generated by downstream moving cylindrical rods on an upstream low pressure turbine blade. A large scale rectilinear blade cascade was constructed to improve access to the boundary layer. The Reynolds number, based on the chord, was 1.6 . 105. Pressure measurements and two-dimensional Laser Doppler Anemometry around the blade were performed to study the boundary layer behavior. Recorded data points are phase averaged with the downstream moving cylindrical rods. A grid is placed upstream of the blade cascade to increase the inlet turbulence intensity. A numerical investigation, based on a laminar simulation with low velocity preconditioning method was carried out on the same configuration. The flow streamlines and the pressure distribution around the blade were found to depend strongly on the downstream rod position. No unsteady effects in the boundary layer of the pressure side were observed, for the inlet turbulence intensities used in our study. Steady experimental results revealed a boundary layer separation bubble on the blade suction side at a low turbulence intensity (Tu in = 1.2%), whereas the boundary layer became turbulent via by-pass transition at a higher turbulence intensity (Tu in = 4.2%).It is seen that, in the unsteady configuration, at a low turbulence intensity (Tu in =1.8%), the laminar boundary layer experiences separation once per rod period. Two transition modes were identified that alternate during a rod period : a separation transition mode and a by-pass mode, which were conditioned by the downstream rod position. Ata higher turbulence intensity (Tu in = 4.0%), no boundary layer separation occurred thereby following a bypass transition mode during an entire rod period. The experimental results presented here demonstrate the large influence of the downstream potential effect generated by a downstream row on the upstream blade boundary layer behavior. In order to improve the efficiency of engines, this effect and its interaction with the wake effect must be taken into account in turbomachinery design.LYON-Ecole Centrale (690812301) / SudocSudocFranceF

    CaSn(OH)6 hydroxides, CaSnO3 oxides and CaSnF6 fluorides: synthesis and structural filiation. Cationic environment impact on Pr3+ doped compounds luminescence

    No full text
    CaSn(OH)6, CaSnO3 and CaSnF6 compounds were elaborated from a “one-batch” synthesis route: the coprecipitation of the pure double hydroxide leads to pure double oxide or fluoride after annealing treatments under air or HF as anhydrous gas, respectively. Structural and morphological features of the three matrices were carefully investigated by X Ray Diffraction analysis and Scanning Electron Microscopy, respectively. In addition, the luminescent properties of the Pr-doped compounds were performed and compared. The nanometric size of the double hydroxide inhibits the luminescence. The interpretation of the emission spectra obtained for Pr-doped CaSnO3 and CaSnF6 compounds is based on the covalence/ionic balance of the M–O or M–F bonds.Fluorures inorganiques photochrome
    corecore