20,583 research outputs found

    The Bragg regime of the two-particle Kapitza-Dirac effect

    Full text link
    We analyze the Bragg regime of the two-particle Kapitza-Dirac arrangement, completing the basic theory of this effect. We provide a detailed evaluation of the detection probabilities for multi-mode states, showing that a complete description must include the interaction time in addition to the usual dimensionless parameter w. The arrangement can be used as a massive two-particle beam splitter. In this respect, we present a comparison with Hong-Ou-Mandel-type experiments in quantum optics. The analysis reveals the presence of dips for massive bosons and a differentiated behavior of distinguishable and identical particles in an unexplored scenario. We suggest that the arrangement can provide the basis for symmetrization verification schemes

    A new proof of the Herman-Avila-Bochi formula for Lyapunov exponents of SL(2,R)-cocycles

    Full text link
    We study the geometry of the action of SL(2,R) on the projective line in order to present a new and simpler proof of the Herman-Avila-Bochi formula. This formula gives the average Lyapunov exponent of a class of 1-families of SL(2,R)-cocycles.Comment: 13 pages, 2 figure

    Precise analysis of pion-pion scattering data from Roy equations and forward dispersion relations

    Get PDF
    We review our recent analysis of pion-pion scattering data in terms of Roy equations and Forward Dispersion Relations, and present some preliminary results in terms of a new set of once-subtracted coupled equations for partial waves. The first analysis consists of independent fits to the different pion-pion channels that satisfies rather well the dispersive representation. In the second analysis we constrain the fit with the dispersion relations. The latter provides a very precise and model independent description of data using just analyticity, causality and crossing.Comment: 6 pages, two figures. To appear in the proceedings of the Workshop on Scalar Mesons and Related Topics, Lisbon, Portugal, 11-16 Feb 200

    Gravitational waves from the Papaloizou-Pringle instability in black hole-torus systems

    Full text link
    Black hole (BH)--torus systems are promising candidates for the central engine of gamma-ray bursts (GRBs), and also possible outcomes of the collapse of supermassive stars to supermassive black holes (SMBHs). By three-dimensional general relativistic numerical simulations, we show that an m=1m=1 nonaxisymmetric instability grows for a wide range of self-gravitating tori orbiting BHs. The resulting nonaxisymmetric structure persists for a timescale much longer than the dynamical one, becoming a strong emitter of large amplitude, quasiperiodic gravitational waves. Our results indicate that both, the central engine of GRBs and newly formed SMBHs, can be strong gravitational wave sources observable by forthcoming ground-based and spacecraft detectors.Comment: 4 pages, 4 figure, to be published in PR
    corecore