27 research outputs found

    Overview and recent advances in the treatment of neuroblastoma

    Full text link
    IntroductionChildren with neuroblastoma have widely divergent outcomes, ranging from cure in >90% of patients with low risk disease to <50% for those with high risk disease. Recent research has shed light on the biology of neuroblastoma, allowing for more accurate risk stratification and treatment reduction in many cases, although newer treatment strategies for children with high-risk and relapsed neuroblastoma are needed to improve outcomes. Areas covered: Neuroblastoma epidemiology, diagnosis, risk stratification, and recent advances in treatment of both newly diagnosed and relapsed neuroblastoma. Expert commentary: The identification of newer tumor targets and of novel cell-mediated immunotherapy agents may lead to novel therapeutic approaches, and clinical trials for regimens designed to target individual genetic aberrations in tumors are underway. A combination of therapeutic modalities will likely be required to improve survival and cure rates for patients with high-risk neuroblastoma

    Binimetinib inhibits MEK and is effective against neuroblastoma tumor cells with low NF1 expression

    No full text
    BACKGROUND: Novel therapies are needed for children with high-risk and relapsed neuroblastoma. We hypothesized that MAPK/ERK kinase (MEK) inhibition with the novel MEK1/2 inhibitor binimetinib would be effective in neuroblastoma preclinical models. METHODS: Levels of total and phosphorylated MEK and extracellular signal-regulated kinase (ERK) were examined in primary neuroblastoma tumor samples and in neuroblastoma cell lines by Western blot. A panel of established neuroblastoma tumor cell lines was treated with increasing concentrations of binimetinib, and their viability was determined using MTT assays. Western blot analyses were performed to examine changes in total and phosphorylated MEK and ERK and to measure apoptosis in neuroblastoma tumor cells after binimetinib treatment. NF1 protein levels in neuroblastoma cell lines were determined using Western blot assays. Gene expression of NF1 and MEK1 was examined in relationship to neuroblastoma patient outcomes. RESULTS: Both primary neuroblastoma tumor samples and cell lines showed detectable levels of total and phosphorylated MEK and ERK. IC(50) values for cells sensitive to binimetinib ranged from 8 nM to 1.16 μM, while resistant cells did not demonstrate any significant reduction in cell viability with doses exceeding 15 μM. Sensitive cells showed higher endogenous expression of phosphorylated MEK and ERK. Gene expression of NF1, but not MEK1, correlated with patient outcomes in neuroblastoma, and NF1 protein expression also correlated with responses to binimetinib. CONCLUSIONS: Neuroblastoma tumor cells show a range of sensitivities to the novel MEK inhibitor binimetinib. In response to binimetinib, sensitive cells demonstrated complete loss of phosphorylated ERK, while resistant cells demonstrated either incomplete loss of ERK phosphorylation or minimal effects on MEK phosphorylation, suggesting alternative mechanisms of resistance. NF1 protein expression correlated with responses to binimetinib, supporting the use of NF1 as a biomarker to identify patients that may respond to MEK inhibition. MEK inhibition therefore represents a potential new therapeutic strategy for neuroblastoma. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12885-016-2199-z) contains supplementary material, which is available to authorized users

    Preclinical evaluation of the novel 7-substituted camptothecin Namitecan (ST1968) in paediatric tumour models

    No full text
    The present study aimed to evaluate the new water soluble camptothecin analogue Namitecan (ST1968) in preclinical paediatric tumour models of the nervous system comprehensive of neuroblastoma, primitive neuroectodermal tumours/PNET and medulloblastoma where the drug was compared to Irinotecan
    corecore