77 research outputs found

    Alien Plants Introduced by Different Pathways Differ in Invasion Success: Unintentional Introductions as a Threat to Natural Areas

    Get PDF
    BACKGROUND: Understanding the dimensions of pathways of introduction of alien plants is important for regulating species invasions, but how particular pathways differ in terms of post-invasion success of species they deliver has never been rigorously tested. We asked whether invasion status, distribution and habitat range of 1,007 alien plant species introduced after 1500 A.D. to the Czech Republic differ among four basic pathways of introduction recognized for plants. PRINCIPAL FINDINGS: Pathways introducing alien species deliberately as commodities (direct release into the wild; escape from cultivation) result in easier naturalization and invasion than pathways of unintentional introduction (contaminant of a commodity; stowaway arriving without association with it). The proportion of naturalized and invasive species among all introductions delivered by a particular pathway decreases with a decreasing level of direct assistance from humans associated with that pathway, from release and escape to contaminant and stowaway. However, those species that are introduced via unintentional pathways and become invasive are as widely distributed as deliberately introduced species, and those introduced as contaminants invade an even wider range of seminatural habitats. CONCLUSIONS: Pathways associated with deliberate species introductions with commodities and pathways whereby species are unintentionally introduced are contrasting modes of introductions in terms of invasion success. However, various measures of the outcome of the invasion process, in terms of species' invasion success, need to be considered to accurately evaluate the role of and threat imposed by individual pathways. By employing various measures we show that invasions by unintentionally introduced plant species need to be considered by management as seriously as those introduced by horticulture, because they invade a wide range of seminatural habitats, hence representing even a greater threat to natural areas

    Plastic Traits of an Exotic Grass Contribute to Its Abundance but Are Not Always Favourable

    Get PDF
    In herbaceous ecosystems worldwide, biodiversity has been negatively impacted by changed grazing regimes and nutrient enrichment. Altered disturbance regimes are thought to favour invasive species that have a high phenotypic plasticity, although most studies measure plasticity under controlled conditions in the greenhouse and then assume plasticity is an advantage in the field. Here, we compare trait plasticity between three co-occurring, C4 perennial grass species, an invader Eragrostis curvula, and natives Eragrostis sororia and Aristida personata to grazing and fertilizer in a three-year field trial. We measured abundances and several leaf traits known to correlate with strategies used by plants to fix carbon and acquire resources, i.e. specific leaf area (SLA), leaf dry matter content (LDMC), leaf nutrient concentrations (N, C∶N, P), assimilation rates (Amax) and photosynthetic nitrogen use efficiency (PNUE). In the control treatment (grazed only), trait values for SLA, leaf C∶N ratios, Amax and PNUE differed significantly between the three grass species. When trait values were compared across treatments, E. curvula showed higher trait plasticity than the native grasses, and this correlated with an increase in abundance across all but the grazed/fertilized treatment. The native grasses showed little trait plasticity in response to the treatments. Aristida personata decreased significantly in the treatments where E. curvula increased, and E. sororia abundance increased possibly due to increased rainfall and not in response to treatments or invader abundance. Overall, we found that plasticity did not favour an increase in abundance of E. curvula under the grazed/fertilized treatment likely because leaf nutrient contents increased and subsequently its' palatability to consumers. E. curvula also displayed a higher resource use efficiency than the native grasses. These findings suggest resource conditions and disturbance regimes can be manipulated to disadvantage the success of even plastic exotic species

    The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China.

    Get PDF
    Bacteria play key roles in the ecology of both aquatic and terrestrial ecosystems; however, little is known about their diversity and biogeography, especially in the rare microbial biosphere of inland freshwater ecosystems. Here we investigated aspects of the community ecology and geographical distribution of abundant and rare bacterioplankton using high-throughput sequencing and examined the relative influence of local environmental variables and regional (spatial) factors on their geographical distribution patterns in 42 lakes and reservoirs across China. Our results showed that the geographical patterns of abundant and rare bacterial subcommunities were generally similar, and both of them showed a significant distance-decay relationship. This suggests that the rare bacterial biosphere is not a random assembly, as some authors have assumed, and that its distribution is most likely subject to the same ecological processes that control abundant taxa. However, we identified some differences between the abundant and rare groups as both groups of bacteria showed a significant positive relationship between sites occupancy and abundance, but the abundant bacteria exhibited a weaker distance-decay relationship than the rare bacteria. Our results implied that rare subcommunities were mostly governed by local environmental variables, whereas the abundant subcommunities were mainly affected by regional factors. In addition, both local and regional variables that were significantly related to the spatial variation of abundant bacterial community composition were different to those of rare ones, suggesting that abundant and rare bacteria may have discrepant ecological niches and may play different roles in natural ecosystems

    From Sea to Sea: Canada's Three Oceans of Biodiversity

    Get PDF
    Evaluating and understanding biodiversity in marine ecosystems are both necessary and challenging for conservation. This paper compiles and summarizes current knowledge of the diversity of marine taxa in Canada's three oceans while recognizing that this compilation is incomplete and will change in the future. That Canada has the longest coastline in the world and incorporates distinctly different biogeographic provinces and ecoregions (e.g., temperate through ice-covered areas) constrains this analysis. The taxonomic groups presented here include microbes, phytoplankton, macroalgae, zooplankton, benthic infauna, fishes, and marine mammals. The minimum number of species or taxa compiled here is 15,988 for the three Canadian oceans. However, this number clearly underestimates in several ways the total number of taxa present. First, there are significant gaps in the published literature. Second, the diversity of many habitats has not been compiled for all taxonomic groups (e.g., intertidal rocky shores, deep sea), and data compilations are based on short-term, directed research programs or longer-term monitoring activities with limited spatial resolution. Third, the biodiversity of large organisms is well known, but this is not true of smaller organisms. Finally, the greatest constraint on this summary is the willingness and capacity of those who collected the data to make it available to those interested in biodiversity meta-analyses. Confirmation of identities and intercomparison of studies are also constrained by the disturbing rate of decline in the number of taxonomists and systematists specializing on marine taxa in Canada. This decline is mostly the result of retirements of current specialists and to a lack of training and employment opportunities for new ones. Considering the difficulties encountered in compiling an overview of biogeographic data and the diversity of species or taxa in Canada's three oceans, this synthesis is intended to serve as a biodiversity baseline for a new program on marine biodiversity, the Canadian Healthy Ocean Network. A major effort needs to be undertaken to establish a complete baseline of Canadian marine biodiversity of all taxonomic groups, especially if we are to understand and conserve this part of Canada's natural heritage

    Ecosystem Services from Small Forest Patches in Agricultural Landscapes

    Full text link

    Mycorrhizal fungi suppress aggressive Agricultural weeds.

    Get PDF
    Plant growth responses to arbuscular mycorrhizal fungi (AMF) are highly variable, ranging from mutualism in a wide range of plants, to antagonism in some non-mycorrhizal plant species and plants characteristic of disturbed environments. Many agricultural weeds are non mycorrhizal or originate from ruderal environments where AMF are rare or absent. This led us to hypothesize that AMF may suppress weed growth, a mycorrhizal attribute which has hardly been considered. We investigated the impact of AMF and AMF diversity (three versus one AMF taxon) on weed growth in experimental microcosms where a crop (sunflower) was grown together with six widespread weed species. The presence of AMF reduced total weed biomass with 47% in microcosms where weeds were grown together with sunflower and with 25% in microcosms where weeds were grown alone. The biomass of two out of six weed species was significantly reduced by AMF (-66% & -59%) while the biomass of the four remaining weed species was only slightly reduced (-20% to -37%). Sunflower productivity was not influenced by AMF or AMF diversity. However, sunflower benefitted from AMF via enhanced phosphorus nutrition. The results indicate that the stimulation of arbuscular mycorrhizal fungi in agro-ecosystems may suppress some aggressive weeds
    corecore