68 research outputs found

    A perturbation analysis of stochastic matrix Riccati diffusions

    Full text link
    Matrix differential Riccati equations are central in filtering and optimal control theory. The purpose of this article is to develop a perturbation theory for a class of stochastic matrix Riccati diffusions. Diffusions of this type arise, for example, in the analysis of ensemble Kalman-Bucy filters since they describe the flow of certain sample covariance estimates. In this context, the random perturbations come from the fluctuations of a mean field particle interpretation of a class of nonlinear diffusions equipped with an interacting sample covariance matrix functional. The main purpose of this article is to derive non-asymptotic Taylor-type expansions of stochastic matrix Riccati flows with respect to some perturbation parameter. These expansions rely on an original combination of stochastic differential analysis and nonlinear semigroup techniques on matrix spaces. The results here quantify the fluctuation of the stochastic flow around the limiting deterministic Riccati equation, at any order. The convergence of the interacting sample covariance matrices to the deterministic Riccati flow is proven as the number of particles tends to infinity. Also presented are refined moment estimates and sharp bias and variance estimates. These expansions are also used to deduce a functional central limit theorem at the level of the diffusion process in matrix spaces

    Unbiased multi-index Monte Carlo

    No full text
    We introduce a new class of Monte Carlo-based approximations of expectations of random variables such that their laws are only available via certain discretizations. Sampling from the discretized versions of these laws can typically introduce a bias. In this paper, we show how to remove that bias, by introducing a new version of multi-index Monte Carlo (MIMC) that has the added advantage of reducing the computational effort, relative to i.i.d. sampling from the most precise discretization, for a given level of error. We cover extensions of results regarding variance and optimality criteria for the new approach. We apply the methodology to the problem of computing an unbiased mollified version of the solution of a partial differential equation with random coefficients. A second application concerns the Bayesian inference (the smoothing problem) of an infinite-dimensional signal modeled by the solution of a stochastic partial differential equation that is observed on a discrete space grid and at discrete times. Both applications are complemented by numerical simulations

    Backward Nonlinear Smoothing Diffusions

    Full text link
    We present a backward diffusion flow (i.e., a backward-in-time stochastic differential equation) whose marginal distribution at any (earlier) time is equal to the smoothing distribution when the terminal state (at a later time) is distributed according to the filtering distribution. This is a novel interpretation of the smoothing solution in terms of a nonlinear diffusion (stochastic) flow. This solution contrasts with, and complements, the (backward) deterministic flow of probability distributions (viz. a type of Kushner smoothing equation) studied in a number of prior works. A number of corollaries of our main result are given, including a derivation of the time-reversal of a stochastic differential equation, and an immediate derivation of the classical Rauch--Tung--Striebel smoothing equations in the linear setting

    On one-dimensional Riccati diffusions

    Full text link
    This article is concerned with the fluctuation analysis and the stability properties of a class of one-dimensional Riccati diffusions. This class of Riccati diffusion is quite general, and arises, for example, in data assimilation applications, and more particularly in ensemble (Kalman-type) filtering theory. These one-dimensional stochastic differential equations exhibit a quadratic drift function and a non-Lipschitz continuous diffusion function. We present a novel approach, combining tangent process techniques, Feynman-Kac path integration, and exponential change of measures, to derive sharp exponential decays to equilibrium. We also provide uniform estimates with respect to the time horizon, quantifying with some precision the fluctuations of these diffusions around a limiting deterministic Riccati differential equation. These results provide a stronger and almost sure version of the conventional central limit theorem. We illustrate these results in the context of ensemble Kalman-Bucy filtering. In this context, the time-uniform convergence results developed in this work do not require a stable signal. To the best of our knowledge, the exponential stability and the fluctuation analysis developed in this work are the first results of this kind for this class of nonlinear diffusions

    Bayesian Computation with Intractable Likelihoods

    Full text link
    This article surveys computational methods for posterior inference with intractable likelihoods, that is where the likelihood function is unavailable in closed form, or where evaluation of the likelihood is infeasible. We review recent developments in pseudo-marginal methods, approximate Bayesian computation (ABC), the exchange algorithm, thermodynamic integration, and composite likelihood, paying particular attention to advancements in scalability for large datasets. We also mention R and MATLAB source code for implementations of these algorithms, where they are available.Comment: arXiv admin note: text overlap with arXiv:1503.0806

    Voltammetric sensor for theophylline using sol-gel immobilized molecularly imprinted polymer particles

    Get PDF
    El títol del pre-print va ser: Development of a voltammetric sensor for theophylline with sol-gel immobilised molecularly imprinted polymer particlesApplication of Molecularly Imprinted Polymers (MIPs) to sensor substrates holds great promise within the field of electrochemical sensing due to their low price, tailored selectivity and facile synthesis protocols. Though MIPs can be synthesised directly onto the surface of sensors via layer or film deposition, this can be difficult due to the high number of interdependent steps involved in their synthesis. For this reason, synthesis of MIP particles is more frequently employed by synthetic and non-specialist laboratories alike. There is, however a lack of immobilisation protocols for these particles. Herein, there is presented a sol-gel based immobilisation method for MIP particles for the development of an electrochemical sensor. The macroporous precipitation-polymerised particles were imprinted with Theophylline, combined with graphite in the sol-gel and deposited on an electrode surface. The sensor was tested using differential pulse voltammetry. A limit of detection of 1µM and a relative standard deviation of 6.85% was observed for the primary analyte. The electrode was regenerated via a thermal washing process with a signal loss of 29.3% following the initial regeneration and 2.35% per subsequent regeneration

    20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years

    Get PDF
    The administration of endocrine therapy for 5 years substantially reduces recurrence rates during and after treatment in women with early-stage, estrogen-receptor (ER)-positive breast cancer. Extending such therapy beyond 5 years offers further protection but has additional side effects. Obtaining data on the absolute risk of subsequent distant recurrence if therapy stops at 5 years could help determine whether to extend treatment

    Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials

    Get PDF
    Background Neoadjuvant chemotherapy (NACT) for early breast cancer can make breast-conserving surgery more feasible and might be more likely to eradicate micrometastatic disease than might the same chemotherapy given after surgery. We investigated the long-term benefits and risks of NACT and the influence of tumour characteristics on outcome with a collaborative meta-analysis of individual patient data from relevant randomised trials. Methods We obtained information about prerandomisation tumour characteristics, clinical tumour response, surgery, recurrence, and mortality for 4756 women in ten randomised trials in early breast cancer that began before 2005 and compared NACT with the same chemotherapy given postoperatively. Primary outcomes were tumour response, extent of local therapy, local and distant recurrence, breast cancer death, and overall mortality. Analyses by intention-to-treat used standard regression (for response and frequency of breast-conserving therapy) and log-rank methods (for recurrence and mortality). Findings Patients entered the trials from 1983 to 2002 and median follow-up was 9 years (IQR 5–14), with the last follow-up in 2013. Most chemotherapy was anthracycline based (3838 [81%] of 4756 women). More than two thirds (1349 [69%] of 1947) of women allocated NACT had a complete or partial clinical response. Patients allocated NACT had an increased frequency of breast-conserving therapy (1504 [65%] of 2320 treated with NACT vs 1135 [49%] of 2318 treated with adjuvant chemotherapy). NACT was associated with more frequent local recurrence than was adjuvant chemotherapy: the 15 year local recurrence was 21·4% for NACT versus 15·9% for adjuvant chemotherapy (5·5% increase [95% CI 2·4–8·6]; rate ratio 1·37 [95% CI 1·17–1·61]; p=0·0001). No significant difference between NACT and adjuvant chemotherapy was noted for distant recurrence (15 year risk 38·2% for NACT vs 38·0% for adjuvant chemotherapy; rate ratio 1·02 [95% CI 0·92–1·14]; p=0·66), breast cancer mortality (34·4% vs 33·7%; 1·06 [0·95–1·18]; p=0·31), or death from any cause (40·9% vs 41·2%; 1·04 [0·94–1·15]; p=0·45). Interpretation Tumours downsized by NACT might have higher local recurrence after breast-conserving therapy than might tumours of the same dimensions in women who have not received NACT. Strategies to mitigate the increased local recurrence after breast-conserving therapy in tumours downsized by NACT should be considered—eg, careful tumour localisation, detailed pathological assessment, and appropriate radiotherapy
    corecore