50 research outputs found

    Identification of simple sequence repeat markers for sweetpotato weevil resistance

    Get PDF
    The development of sweetpotato [Ipomoea batatas (L.) Lam] germplasm with resistance to sweetpotato weevil (SPW) requires an understanding of the biochemical and genetic mechanisms of resistance to optimize crop resistance. The African sweetpotato landrace, ‘New Kawogo’, was reported to be moderately resistant to two species of SPW, Cylas puncticollis and Cylas brunneus. Resistance has been associated with the presence of hydroxycinnamic acids esters (HCAs), but the underlying genetic basis remains unknown. To determine the genetic basis of this resistance, a bi-parental sweetpotato population from a cross between the moderately resistant, white-fleshed ‘New Kawogo’ and the highly susceptible, orange-fleshed North American variety ‘Beauregard’ was evaluated for SPW resistance and genotyped with simple sequence repeat (SSR) markers to identify weevil resistance loci. SPW resistance was measured on the basis of field storage root SPW damage severity and total HCA ester concentrations. Moderate broad sense heritability (H2 = 0.49) was observed for weevil resistance in the population. Mean genotype SPW severity scores ranged from 1.0 to 9.0 and 25 progeny exhibited transgressive segregation for SPW resistance. Mean genotype total HCA ester concentrations were significantly different (P < 0.0001). A weak but significant correlation (r = 0.103, P = 0.015) was observed between total HCA ester concentration and SPW severity. A total of five and seven SSR markers were associated with field SPW severity and total HCA ester concentration, respectively. Markers IBS11, IbE5 and IbJ544b showed significant association with both field and HCA-based resistance, representing potential markers for the development of SPW resistant sweetpotato cultivars

    Remote detection of invasive alien species

    Get PDF
    The spread of invasive alien species (IAS) is recognized as the most severe threat to biodiversity outside of climate change and anthropogenic habitat destruction. IAS negatively impact ecosystems, local economies, and residents. They are especially problematic because once established, they give rise to positive feedbacks, increasing the likelihood of further invasions and spread. The integration of remote sensing (RS) to the study of invasion, in addition to contributing to our understanding of invasion processes and impacts to biodiversity, has enabled managers to monitor invasions and predict the spread of IAS, thus supporting biodiversity conservation and management action. This chapter focuses on RS capabilities to detect and monitor invasive plant species across terrestrial, riparian, aquatic, and human-modified ecosystems. All of these environments have unique species assemblages and their own optimal methodology for effective detection and mapping, which we discuss in detail

    Stressed out symbiotes:hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi

    Get PDF
    Abiotic stress is a widespread threat to both plant and soil communities. Arbuscular mycorrhizal (AM) fungi can alleviate effects of abiotic stress by improving host plant stress tolerance, but the direct effects of abiotic stress on AM fungi are less well understood. We propose two hypotheses predicting how AM fungi will respond to abiotic stress. The stress exclusion hypothesis predicts that AM fungal abundance and diversity will decrease with persistent abiotic stress. The mycorrhizal stress adaptation hypothesis predicts that AM fungi will evolve in response to abiotic stress to maintain their fitness. We conclude that abiotic stress can have effects on AM fungi independent of the effects on the host plant. AM fungal communities will change in composition in response to abiotic stress, which may mean the loss of important individual species. This could alter feedbacks to the plant community and beyond. AM fungi will adapt to abiotic stress independent of their host plant. The adaptation of AM fungi to abiotic stress should allow the maintenance of the plant-AM fungal mutualism in the face of changing climates. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00442-016-3673-7) contains supplementary material, which is available to authorized users

    Leaf litter traits of invasive alien species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison.

    Get PDF
    Leaf traits related to the performance of invasive alien species can influence nutrient cycling through litter decomposition. However, there is no consensus yet about whether there are consistent differences in functional leaf traits between invasive and native species that also manifest themselves through their "after life" effects on litter decomposition. When addressing this question it is important to avoid confounding effects of other plant traits related to early phylogenetic divergences and to understand the mechanism underlying the observed results to predict which invasive species will exert larger effects on nutrient cycling. We compared initial leaf litter traits, and their effect on decomposability as tested in standardized incubations, in 19 invasive-native pairs of co-familial species from Spain. They included 12 woody and seven herbaceous alien species representative of the Spanish invasive flora. The predictive power of leaf litter decomposition rates followed the order: growth form > family > status (invasive vs. native) > leaf type. Within species pairs litter decomposition tended to be slower and more dependent on N and P in invaders than in natives. This difference was likely driven by the higher lignin content of invader leaves. Although our study has the limitation of not representing the natural conditions from each invaded community, it suggests a potential slowing down of the nutrient cycle at ecosystem scale upon invasion. © Springer-Verlag 2009

    The genetic heterogeneity of colorectal cancer predisposition - guidelines for gene discovery

    Get PDF

    Adjusting the lens of invasion biology to focus on the impacts of climate-driven range shifts

    No full text
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordAs Earth’s climate rapidly changes, species range shifts are considered key to species persistence. However, some range-shifting species will alter community structure and ecosystem processes. By adapting existing invasion risk assessment frameworks, we can identify characteristics shared with high-impact introductions and thus predict potential impacts. There are fundamental differences between introduced and range-shifting species, primarily shared evolutionary histories between range shifters and their new community. Nevertheless, impacts can occur via analogous mechanisms, such as wide dispersal, community disturbance and low biotic resistance. As ranges shift in response to climate change, we have an opportunity to develop plans to facilitate advantageous movements and limit those that are problematic.Albert and Elaine Borchard FoundationUniversity of MichiganNational Institute of Food and AgricultureU.S. Department of AgricultureMassachusetts Agricultural Experiment StationU.S. Geological Survey Northeast Climate Adaptation Science CenterDepartment of Environmental Conservatio

    The role of environmental factors in promoting and limiting biological invasions in South Africa

    Get PDF
    CITATION: Wilson, J.R. et al. 2020. The role of environmental factors in promoting and limiting biological invasions in South Africa. In: Biological Invasions in South Africa. van Wilgen, B.W., Measey, J., Richardson, D.M., Wilson, J.R. and Zengeya, T.A. (eds.). Springer, Cham. pp. 355-385. doi:10.1007/978-3-030-32394-3_13The original publication is available at https://link.springer.com/book/10.1007/978-3-030-32394-3This chapter provides an overview of the researchers and research initiatives relevant to invasion science in South Africa over the past 130 years, profiling some of the more recent personalities, particularly those who are today regarded as international leaders in the field. A number of key points arise from this review. Since 1913, South Africa has been one of a few countries that have investigated and implemented alien plant biological control on a large scale, and is regarded as a leader in this field. South Africa was also prominent in the conceptualisation and execution of the international SCOPE project on the ecology of biological invasions in the 1980s, during which South African scientists established themselves as valuable contributors to the field. The development of invasion science benefitted from a deliberate strategy to promote multi-organisational, interdisciplinary research in the 1980s. Since 1995, the Working for Water programme has provided funding for research and a host of practical questions that required research solutions. Finally, the establishment of a national centre of excellence with a focus on biological invasions has made a considerable contribution to building human capacity in the field, resulting in advances in all aspects of invasion science—primarily in terms of biology and ecology, but also in history, sociology, economics and management. South Africa has punched well above its weight in developing the field of invasion science, possibly because of the remarkable biodiversity that provided a rich template on which to carry out research, and a small, well-connected research community that was encouraged to operate in a collaborative manner.https://link.springer.com/chapter/10.1007%2F978-3-030-32394-3_13Publisher’s versio
    corecore