49 research outputs found
Development and characterization of a Chinese hamster ovary cell-specific oligonucleotide microarray
Platform for Plasmodium vivax vaccine discovery and development
Plasmodium vivax is the most prevalent malaria parasite on the American continent. It generates a global burden of 80-100 million cases annually and represents a tremendous public health problem, particularly in the American and Asian continents. A malaria vaccine would be considered the most cost-effective measure against this vector-borne disease and it would contribute to a reduction in malaria cases and to eventual eradication. Although significant progress has been achieved in the search for Plasmodium falciparum antigens that could be used in a vaccine, limited progress has been made in the search for P. vivax components that might be eligible for vaccine development. This is primarily due to the lack of in vitro cultures to serve as an antigen source and to inadequate funding. While the most advanced P. falciparum vaccine candidate is currently being tested in Phase III trials in Africa, the most advanced P. vivax candidates have only advanced to Phase I trials. Herein, we describe the overall strategy and progress in P. vivax vaccine research, from antigen discovery to preclinical and clinical development and we discuss the regional potential of Latin America to develop a comprehensive platform for vaccine development
HIV Malaria Co-Infection Is Associated with Atypical Memory B Cell Expansion and a Reduced Antibody Response to a Broad Array of Plasmodium falciparum Antigens in Rwandan Adults
HIV infected individuals in malaria endemic areas experience more frequent and severe malaria episodes compared to non HIV infected. This clinical observation has been linked to a deficiency in antibody responses to Plasmodium falciparum antigens; however, prior studies have only focused on the antibody response to <0.5% of P. falciparum proteins. To obtain a broader and less-biased view of the effect of HIV on antibody responses to malaria we compared antibody profiles of HIV positive (HIV+) and negative (HIV-) Rwandan adults with symptomatic malaria using a microarray containing 824 P. falciparum proteins. We also investigated the cellular basis of the antibody response in the two groups by analyzing B and T cell subsets by flow cytometry. Although HIV malaria co-infected individuals generated antibodies to a large number of P. falciparum antigens, including potential vaccine candidates, the breadth and magnitude of their response was reduced compared to HIV- individuals. HIV malaria co-infection was also associated with a higher percentage of atypical memory B cells (MBC) (CD19+CD10-CD21-CD27-) compared to malaria infection alone. Among HIV+ individuals the CD4+ T cell count and HIV viral load only partially explained variability in the breadth of P. falciparum-specific antibody responses. Taken together, these data indicate that HIV malaria co-infection is associated with an expansion of atypical MBCs and a diminished antibody response to a diverse array of P. falciparum antigens, thus offering mechanistic insight into the higher risk of malaria in HIV+ individuals
The development of a multivalent DNA vaccine for malaria
According to the latest report from the World Health Organization (December 1996), malaria is still a public health problem in more than 90 countries, inhabited by a total of some 2.4 billion people or 40% of the world's population. Worldwide incidence of the disease is estimated to be 300-500 million clinical cases each year. Mortality due to malaria is estimated to be in the range of 1.5-2.7 million deaths annually. The vast majority of deaths occur among young children in Africa, especially in remote rural areas with poor access to health services. Immunity to malaria seems to occur among residents of malarious areas with increasing age which prevents an even greater number of deaths. However, this type of protection is short-lived and requires frequent exposure to the malaria parasite. The magnitude of the malaria problem is of increasing concern to a broad range of people who do not reside in the endemic areas. During the twentieth century, United States military forces have lost more person days to malaria than to bullets in every operation conducted in a malarious region [4]. The number of civilian travelers to malarious areas continues to grow as more people throughout the world become increasingly mobile. Why does malaria remain such a problem? Some of the main reasons are these: the parasite has become increasingly resistant to antimalarial drugs; the mosquito vectors that transmit the parasites have developed resistance to the commonly used insecticides; infrastructures required to deliver mosquito control and treatment of patients in many developing countries have been inadequate; and, nonimmune populations have migrated to malarious areas as sometimes occurs in refugee situations. The development of new drugs against malaria is an ongoing effort but this race to stay ahead may one day be lost. The continuing search for tools to combt this disease inÂcludes efforts to develop a vaccine.\u