55 research outputs found

    Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15° 20′N : ODP Hole 1274A

    Get PDF
    Author Posting. © The Authors, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Contributions to Mineralogy and Petrology 153 (2007): 303-319, doi:10.1007/s00410-006-0148-6.ODP Leg 209 Site 1274 mantle peridotites are highly refractory in terms of lack of residual clinopyroxene, olivine Mg# (up to 0.92) and spinel Cr# (~0.5), suggesting high degree of partial melting (>20%). Detailed studies of their microstructures show that they have extensively reacted with a pervading intergranular melt prior to cooling in the lithosphere, leading to crystallization of olivine, clinopyroxene and spinel at the expense of orthopyroxene. The least reacted harzburgites are too rich in orthopyroxene to be simple residues of low-pressure (spinel field) partial melting. Cu-rich sulfides that precipitated with the clinopyroxenes indicate that the intergranular melt was generated by no more than 12% melting of a MORB mantle or by more extensive melting of a clinopyroxene-rich lithology. Rare olivine-rich lherzolitic domains, characterized by relics of coarse clinopyroxenes intergrown with magmatic sulfides, support the second interpretation. Further, coarse and intergranular clinopyroxenes are highly depleted in REE, Zr and Ti. A two-stage partial melting/melt-rock reaction history is proposed, in which initial mantle underwent depletion and refertilization after an earlier high pressure (garnet field) melting event before upwelling and remelting beneath the present-day ridge. The ultra-depleted compositions were acquired through melt re-equilibration with residual harzburgites.Funding for this research was provided by Centre National de la Recherche Scientifique-Institut National des Sciences de l’Univers (Programme Dynamique et Evolution de la Terre Interne)

    Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics

    Get PDF
    Open Source PaperThis work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. The attached file is the published version of the article

    Prescriptive variability of drugs by general practitioners

    Get PDF
    <div><p>Prescription drug spending is growing faster than any other sector of healthcare. However, very little is known about patterns of prescribing and cost of prescribing between general practices. In this study, we examined variation in prescription rates and prescription costs through time for 55 GP surgeries in Northern Ireland Western Health and Social Care Trust. Temporal changes in variability of prescribing rates and costs were assessed using the Mann–Kendall test. Outlier practices contributing to between practice variation in prescribing rates were identified with the interquartile range outlier detection method. The relationship between rates and cost of prescribing was explored with Spearman's statistics. The differences in variability and mean number of prescribing rates associated with the practice setting and socioeconomic deprivation were tested using t-test and <i>F</i>-test respectively. The largest between-practice difference in prescribing rates was observed for Apr-Jun 2015, with the number of prescriptions ranging from 3.34 to 8.36 per patient. We showed that practices with outlier prescribing rates greatly contributed to between-practice variability. The largest difference in prescribing costs was reported for Apr-Jun 2014, with the prescription cost per patient ranging from £26.4 to £64.5. In addition, the temporal changes in variability of prescribing rates and costs were shown to undergo an upward trend. We demonstrated that practice setting and socio-economic deprivation accounted for some of the between-practice variation in prescribing. Rural practices had higher between practice variability than urban practices at all time points. Practices situated in more deprived areas had higher prescribing rates but lower variability than those located in less deprived areas. Further analysis is recommended to assess if variation in prescribing can be explained by demographic characteristics of patient population and practice features. Identification of other factors contributing to prescribing variability can help us better address potential inappropriateness of prescribing.</p></div

    Mantle Pb paradoxes : the sulfide solution

    Get PDF
    Author Posting. © Springer, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Contributions to Mineralogy and Petrology 152 (2006): 295-308, doi:10.1007/s00410-006-0108-1.There is growing evidence that the budget of Pb in mantle peridotites is largely contained in sulfide, and that Pb partitions strongly into sulfide relative to silicate melt. In addition, there is evidence to suggest that diffusion rates of Pb in sulfide (solid or melt) are very fast. Given the possibility that sulfide melt ‘wets’ sub-solidus mantle silicates, and has very low viscosity, the implications for Pb behavior during mantle melting are profound. There is only sparse experimental data relating to Pb partitioning between sulfide and silicate, and no data on Pb diffusion rates in sulfides. A full understanding of Pb behavior in sulfide may hold the key to several long-standing and important Pb paradoxes and enigmas. The classical Pb isotope paradox arises from the fact that all known mantle reservoirs lie to the right of the Geochron, with no consensus as to the identity of the “balancing” reservoir. We propose that long-term segregation of sulfide (containing Pb) to the core may resolve this paradox. Another Pb paradox arises from the fact that the Ce/Pb ratio of both OIB and MORB is greater than bulk earth, and constant at a value of 25. The constancy of this “canonical ratio” implies similar partition coefficients for Ce and Pb during magmatic processes (Hofmann et al. 1986), whereas most experimental studies show that Pb is more incompatible in silicates than Ce. Retention of Pb in residual mantle sulfide during melting has the potential to bring the bulk partitioning of Ce into equality with Pb if the sulfide melt/silicate melt partition coefficient for Pb has a value of ~ 14. Modeling shows that the Ce/Pb (or Nd/Pb) of such melts will still accurately reflect that of the source, thus enforcing the paradox that OIB and MORB mantles have markedly higher Ce/Pb (and Nd/Pb) than the bulk silicate earth. This implies large deficiencies of Pb in the mantle sources for these basalts. Sulfide may play other important roles during magmagenesis: 1). advective/diffusive sulfide networks may form potent metasomatic agents (in both introducing and obliterating Pb isotopic heterogeneities in the mantle); 2). silicate melt networks may easily exchange Pb with ambient mantle sulfides (by diffusion or assimilation), thus ‘sampling’ Pb in isotopically heterogeneous mantle domains differently from the silicate-controlled isotope tracer systems (Sr, Nd, Hf), with an apparent ‘de-coupling’ of these systems.Our intemperance should not be blamed on the support we gratefully acknowledge from NSF: EAR- 0125917 to SRH and OCE-0118198 to GAG

    The effects of solid-solid phase equilibria on the oxygen fugacity of the upper mantle

    No full text
    AbstractDecades of study have documented several orders of magnitude variation in the oxygen fugacity (fO2) of terrestrial magmas and of mantle peridotites. This variability has commonly been attributed either to differences in the redox state of multivalent elements (e.g., Fe3+/Fe2+) in mantle sources or to processes acting on melts after segregation from their sources (e.g., crystallization or degassing). We show here that the phase equilibria of plagioclase, spinel, and garnet lherzolites of constant bulk composition (including whole-rock Fe3+/Fe2+) can also lead to systematic variations in fO2 in the shallowest ~100 km of the mantle.Two different thermodynamic models were used to calculate fO2 vs. pressure and temperature for a representative, slightly depleted peridotite of constant composition (including total oxygen). Under subsolidus conditions, increasing pressure in the plagioclase-lherzolite facies from 1 bar up to the disappearance of plagioclase at the lower pressure limit of the spinel-lherzolite facies leads to an fO2 decrease (normalized to a metastable plagioclase-free peridotite of the same composition at the same pressure and temperature) of ~1.25 orders of magnitude. The spinel-lherzolite facies defines a minimum in fO2 and increasing pressure in this facies has little influence on fO2 (normalized to a metastable spinel-free peridotite of the same composition at the same pressure and temperature) up to the appearance of garnet in the stable assemblage. Increasing pressure across the garnet-lherzolite facies leads to increases in fO2 (normalized to a metastable garnet-free peridotite of the same composition at the same pressure and temperature) of ~1 order of magnitude from the low values of the spinel-lherzolite facies. These changes in normalized fO2 reflect primarily the indirect effects of reactions involving aluminous phases in the peridotite that either produce or consume pyroxene with increasing pressure: Reactions that produce pyroxene with increasing pressure (e.g., forsterite + anorthite ⇄ Mg-Tschermak + diopside in plagioclase lherzolite) lead to dilution of Fe3+-bearing components in pyroxene and therefore to decreases in normalized fO2, whereas pyroxene-consuming reactions (e.g., in the garnet stability field) lead initially to enrichment of Fe3+-bearing components in pyroxene and to increases in normalized fO2 (although this is counteracted to some degree by progressive partitioning of Fe3+ from the pyroxene into the garnet with increasing pressure). Thus, the variations in normalized fO2 inferred from thermodynamic modeling of upper mantle peridotite of constant composition are primarily passive consequences of the same phase changes that produce the transitions from plagioclase → spinel → garnet lherzolite and the variations in Al content in pyroxenes within each of these facies. Because these variations are largely driven by phase changes among Al-rich phases, they are predicted to diminish with the decrease in bulk Al content that results from melt extraction from peridotite, and this is consistent with our calculations.Observed variations in FMQ-normalized fO2 of primitive mantle-derived basalts and peridotites within and across different tectonic environments probably mostly reflect variations in the chemical compositions (e.g., Fe3+/Fe2+ or bulk O2 content) of their sources (e.g., produced by subduction of oxidizing fluids, sediments, and altered oceanic crust or of reducing organic material; by equilibration with graphite- or diamond-saturated fluids; or by the effects of partial melting). However, we conclude that in nature the predicted effects of pressure- and temperature-dependent phase equilibria on the fO2 of peridotites of constant composition are likely to be superimposed on variations in fO2 that reflect differences in the whole-rock Fe3+/Fe2+ ratios of peridotites and therefore that the effects of phase equilibria should also be considered in efforts to understand observed variations in the oxygen fugacities of magmas and their mantle sources.</jats:p

    Identifying high potential zones of gold mineralization in a sub-tropical region using Landsat-8 and ASTER remote sensing data: A case study of the Ngoura-Colomines goldfield, eastern Cameroon

    Full text link
    © 2020 Elsevier B.V. Climatic conditions and vegetation constrain the use of optical satellite imagery as an exploration tool for hydrothermal ore mineralization in tropical and subtropical regions. In this investigation, Landsat-8 and ASTER satellite imagery were used to detect hydrothermal alteration zones associated with gold mineralization in the Ngoura-Colomines region, Eastern Cameroon. The study area contains several gold-bearing quartz veins associated with zones of pyritization, muscovite/sericite, iron oxides, and silicification. Principal Component Analysis (PCA), Independent Component Analysis (ICA), and specialized spectral band ratios were used to extract spectral information related to vegetation, iron oxide/hydroxide minerals, Al–OH, Fe-Mg–OH, carbonate group minerals, and silicification using Landsat-8 data at regional scale. Linear Spectral Unmixing (LSU) algorithm was implemented to ASTER VNIR + SWIR bands for detailed discrimination of hematite, jarosite, kaolinite, muscovite, chlorite and epidote at district scale. The Automated Spectral Hourglass (ASH) technique was employed to extract reference spectra directly from the ASTER bands for producing fraction images of end-members using the LSU. A comprehensive field survey was used to verify the remote sensing results. Petrographic study, X-ray diffraction analysis and reflectance spectroscopy indicated the presence of quartz, goethite and sericite, as well as the absorption features of Fe3+/Fe2+, Al–OH, OH/H2O and SiO2 in the alteration zones. Several hydrothermal alteration zones of iron oxide/hydroxide, clay, carbonate minerals and silicification zones were identified, which are spatially associated with known mining areas and gold occurrences in the study area. High potential prospects were also delineated, including the Ngoura-Colomines prospects and the newly discovered Yangamo-Ndatanga and Taparé-Tapondo prospects in the southwestern and southeastern parts of the study area. Consequently, satellite-based mineral prospectivity maps at regional and district scales were generated for the study area by implementing the fuzzy logic model to the most informative thematic layers derived from image processing results. The satellite-based prospectivity maps are reliable for exploration of new gold prospective zones in the Ngoura-Colomines goldfield

    Crater Outflow (Venus)

    No full text
    corecore