35 research outputs found

    Hox cluster duplication in the basal teleost Hiodon alosoides (Osteoglossomorpha)

    Get PDF
    Large-scale—even genome-wide—duplications have repeatedly been invoked as an explanation for major radiations. Teleosts, the most species-rich vertebrate clade, underwent a “fish-specific genome duplication” (FSGD) that is shared by most ray-finned fish lineages. We investigate here the Hox complement of the goldeye (Hiodon alosoides), a representative of Osteoglossomorpha, the most basal teleostean clade. An extensive PCR survey reveals that goldeye has at least eight Hox clusters, indicating a duplicated genome compared to basal actinopterygians. The possession of duplicated Hox clusters is uncoupled to species richness. The Hox system of the goldeye is substantially different from that of other teleost lineages, having retained several duplicates of Hox genes for which crown teleosts have lost at least one copy. A detailed analysis of the PCR fragments as well as full length sequences of two HoxA13 paralogs, and HoxA10 and HoxC4 genes places the duplication event close in time to the divergence of Osteoglossomorpha and crown teleosts. The data are consistent with—but do not conclusively prove—that Osteoglossomorpha shares the FSGD

    New approaches to the study of human brain networks underlying spatial attention and related processes

    Get PDF
    Cognitive processes, such as spatial attention, are thought to rely on extended networks in the human brain. Both clinical data from lesioned patients and fMRI data acquired when healthy subjects perform particular cognitive tasks typically implicate a wide expanse of potentially contributing areas, rather than just a single brain area. Conversely, evidence from more targeted interventions, such as transcranial magnetic stimulation (TMS) or invasive microstimulation of the brain, or selective study of patients with highly focal brain damage, can sometimes indicate that a single brain area may make a key contribution to a particular cognitive process. But this in turn raises questions about how such a brain area may interface with other interconnected areas within a more extended network to support cognitive processes. Here, we provide a brief overview of new approaches that seek to characterise the causal role of particular brain areas within networks of several interacting areas, by measuring the effects of manipulations for a targeted area on function in remote interconnected areas. In human participants, these approaches include concurrent TMS-fMRI and TMS-EEG, as well as combination of the focal lesion method in selected patients with fMRI and/or EEG measures of the functional impact from the lesion on interconnected intact brain areas. Such approaches shed new light on how frontal cortex and parietal cortex modulate sensory areas in the service of attention and cognition, for the normal and damaged human brain

    Mindful Aging: The Effects of Regular Brief Mindfulness Practice on Electrophysiological Markers of Cognitive and Affective Processing in Older Adults

    Get PDF
    There is growing interest in the potential benefits of mindfulness meditation practices in terms of counteracting some of the cognitive effects associated with aging. Pursuing this question, the aim of the present study was to investigate the influence of mindfulness training on executive control and emotion regulation in older adults, by means of studying behavioral and electrophysiological changes. Participants, 55 to 75 years of age, were randomly allocated to an 8-week mindful breath awareness training group or an active control group engaging in brain training exercises. Before and after the training period, participants completed an emotional-counting Stroop task, designed to measure attentional control and emotion regulation processes. Concurrently, their brain activity was measured by means of 64-channel electroencephalography. The results show that engaging in just over 10 min of mindfulness practice five times per week resulted in significant improvements in behavioral (response latency) and electrophysiological (N2 event-related potential) measures related to general task performance. Analyses of the underlying cortical sources (Variable Resolution Electromagnetic Tomography, VARETA) indicate that this N2-related effect is primarily associated with changes in the right angular gyrus and other areas of the dorsal attention network. However, the study did not find the expected specific improvements in executive control and emotion regulation, which may be due to the training instructions or the relative brevity of the intervention. Overall, the results indicate that engaging in mindfulness meditation training improves the maintenance of goal-directed visuospatial attention and may be a useful strategy for counteracting cognitive decline associated with aging

    Alectorioid morphologies in Paleogene lichens : New evidence and re-evaluation of the fossil Alectoria succini Mägdefrau

    Get PDF
    One of the most important issues in molecular dating studies concerns the incorporation of reliable fossil taxa into the phylogenies reconstructed from DNA sequence variation in extant taxa. Lichens are symbiotic associations between fungi and algae and/or cyanobacteria. Several lichen fossils have been used as minimum age constraints in recent studies concerning the diversification of the Ascomycota. Recent evolutionary studies of Lecanoromycetes, an almost exclusively lichen-forming class in the Ascomycota, have utilized the Eocene amber inclusion Alectoria succinic as a minimum age constraint. However, a re-investigation of the type material revealed that this inclusion in fact represents poorly preserved plant remains, most probably of a root. Consequently, this fossil cannot be used as evidence of the presence of the genus Alectoria (Parmeliaceae, Lecanorales) or any other lichens in the Paleogene. However, newly discovered inclusions from Paleogene Baltic and Bitterfeld amber verify that alectorioid morphologies in lichens were in existence by the Paleogene. The new fossils represent either a lineage within the alectorioid group or belong to the genus Oropogon.Peer reviewe

    Exploring the impact of fossil constraints on the divergence time estimates of derived liverworts

    Get PDF
    In this study, we evaluate the impact of fossil assignments and different models of calibration on divergence time estimates carried out as Bayesian analyses. Estimated ages from preceding studies and liverwort inclusions from Baltic amber are used as constraints on a molecular phylogeny of Cephaloziineae (Jungermanniopsida) obtained from sequences of two chloroplast coding regions: rbcL and psbA. In total, the comparison of 12 different analyses demonstrates that an increased reliability of the chronograms is linked to the number of fossils assigned and to the accuracy of their assignments. Inclusion of fossil constraints leads to older ages of most crown groups, but has no influence on lineage through time plots suggesting a nearly constant accumulation of diversity since the origin of Cephaloziineae in the early to Middle Jurassic. Our results provide a note of caution regarding the interpretation of chronograms derived from DNA sequence variation of extant species based on a single calibration point and/or low accuracy of the assignment of fossils to nodes in the phylogeny

    Evolutionary history of plant microRNAs

    No full text
    microRNAs (miRNAs) are short noncoding regulatory genes that perform important roles in plant development and physiology. With the increasing power of next generation sequencing technologies and the development of bioinformatic tools, there has been a dramatic increase in the number of studies surveying the miRNAomes of plant species, which has led to an explosion in the number of described miRNAs. Unfortunately, very many of these new discoveries have been incompletely annotated and thus fail to discriminate genuine miRNAs from small interfering RNAs (siRNAs), fragments of longer RNAs, and random sequence. We review the published repertoire of plant miRNAs, discriminating those that have been correctly annotated. We use these data to explore prevailing hypotheses on the tempo and mode of miRNA evolution within the plant kingdom. </p
    corecore