297 research outputs found

    Chronic Leukemias

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66325/1/j.1365-4362.1982.tb03146.x.pd

    The Changing Face of Neolithic and Bronze Age Ireland: A Big Data Approach to the Settlement and Burial Records

    Get PDF
    This paper synthesizes and analyses the spatial and temporal patterns of archaeological sites in Ireland spanning the Neolithic period and the Bronze Age transition (4300-1900 cal BC). Included are a large number of unpublished, newly discovered sites excavated through development-led projects. Data were also sourced from national archives, published excavation reports and on-line databases. Software tools were developed to deal with the varying nature and resolution of these datasets, allowing chronology to be considered in the analysis to a degree that is usually not possible in prehistoric studies. Summed radiocarbon probabilities are used to examine the dataset using context- and sample-sensitive approaches. Visualisations of spatial and chronological data illustrate the expansion of Early Neolithic settlement, followed by an apparent attenuation of all settlement activity. The Late Neolithic and Chalcolithic periods are characterised by a resurgence and diversification of activity. To assess the significance of these observations, Irish radiocarbon data are compared to an idealized model derived from North American data. Even after taking various considerations into account, human population increases can be suggested to have occurred during the Early and Late Neolithic periods. Gaps and biases in the data are discussed and priorities for future work are identified

    The Role of Imported Cases and Favorable Meteorological Conditions in the Onset of Dengue Epidemics

    Get PDF
    Dengue/dengue hemorrhagic fever is the world's most widely spread mosquito-borne arboviral disease and threatens more than two-thirds of the world's population. Cases are mainly distributed in tropical and subtropical areas in accordance with vector habitats for Aedes aegypti and Ae. albopictus. However, the role of imported cases and favorable meteorological conditions has not yet been quantitatively assessed. This study verified the correlation between the occurrence of indigenous dengue and imported cases in the context of weather variables (temperature, rainfall, relative humidity, etc.) for different time lags in southern Taiwan. Our findings imply that imported cases have a role in igniting indigenous outbreaks, in non-endemics areas, when favorable weather conditions are present. This relationship becomes insignificant in the late phase of local dengue epidemics. Therefore, early detection and case management of imported cases through timely surveillance and rapid laboratory-diagnosis may avert large scale epidemics of dengue/dengue hemorrhagic fever. An early-warning surveillance system integrating meteorological data will be an invaluable tool for successful prevention and control of dengue, particularly in non-endemic countries

    FusionFinder: A Software Tool to Identify Expressed Gene Fusion Candidates from RNA-Seq Data

    Get PDF
    The hallmarks of many haematological malignancies and solid tumours are chromosomal translocations, which may lead to gene fusions. Recently, next-generation sequencing techniques at the transcriptome level (RNA-Seq) have been used to verify known and discover novel transcribed gene fusions. We present FusionFinder, a Perl-based software designed to automate the discovery of candidate gene fusion partners from single-end (SE) or paired-end (PE) RNA-Seq read data. FusionFinder was applied to data from a previously published analysis of the K562 chronic myeloid leukaemia (CML) cell line. Using FusionFinder we successfully replicated the findings of this study and detected additional previously unreported fusion genes in their dataset, which were confirmed experimentally. These included two isoforms of a fusion involving the genes BRK1 and VHL, whose co-deletion has previously been associated with the prevalence and severity of renal-cell carcinoma. FusionFinder is made freely available for non-commercial use and can be downloaded from the project website (http://bioinformatics.childhealthresearch.org.au/software/fusionfinder/)

    Male gonadal dose of ionizing radiation delivered during X-ray examinations and monthly probability of pregnancy: a population-based retrospective study

    Get PDF
    BACKGROUND: Male gonadal exposure to ionizing radiation may disrupt spermatogenesis, but its influence on the fecundity of couples has been rarely studied. We aimed to characterize the influence of male gonadal dose of ionizing radiation delivered during radiodiagnostic on the monthly probability of pregnancy. METHODS: We recruited a random sample of women who retrospectively described 1110 periods of unprotected intercourse beginning between 1985 and 1999 and leading either to a live birth or to no pregnancy; their duration was censored after 13 months. The male partner answered a telephone questionnaire on radiodiagnostic examinations. We assigned a mean gonadal dose to each type of radiodiagnostic examination. We defined male dose for each period of unprotected intercourse as the sum of the gonadal doses of the X-ray examinations experienced between 18 years of age and the date of discontinuation of contraception. Time to pregnancy was analysed using a discrete Cox model with random effect allowing to estimate hazard ratios of pregnancy. RESULTS: After adjustment for female factors likely to influence fecundity, there was no evidence of an association between male dose and the probability of pregnancy (test of homogeneity, p = 0.55). When compared to couples with a male gonadal dose between 0.01 and 0.20 milligrays (n = 321 periods of unprotected intercourse), couples with a gonadal dose above 10 milligrays had a hazard ratio of pregnancy of 1.44 (95% confidence interval, 0.73–2.86, n = 31). CONCLUSION: Our study provides no evidence of a long-term detrimental effect of male gonadal dose of ionizing radiation delivered during radiodiagnostic on the monthly probability of pregnancy during the year following discontinuation of contraceptive use. Classification errors due to the retrospective assessment of male gonadal exposure may have limited the statistical power of our study

    Association of HLA Class I and Class II genes with bcr-abl transcripts in leukemia patients with t(9;22) (q34;q11)

    Get PDF
    BACKGROUND: Based on the site of breakpoint in t(9;22) (q34;q11), bcr-abl fusion in leukemia patients is associated with different types of transcript proteins. In this study we have seen the association of HLA genes with different types of bcr-abl transcripts. The association could predict the bcr-abl peptide presentation by particular HLA molecules. METHODS: The study included a total of 189 patients of mixed ethnicity with chronic myelogenous leukemia and acute lymphocytic leukemia who were being considered for bone marrow transplantation. Typing of bcr-abl transcripts was done by reverse transcriptase PCR method. HLA typing was performed by molecular methods. The bcr-abl and HLA association was studied by calculating the relative risks and chi-square test. RESULTS: Significant negative associations (p < 0.05) were observed with HLA-A*02 (b2a2, e1a2), -A*68 (b2a2, b3a2, e1a2), -B*14 (b2a2, b3a2, e1a2), -B*15 (b2a2, b3a2), -B*40 (b2a2), -DQB1*0303 (b2a2, b3a2), -DQB1*0603 (b2a2), -DRB1*0401 (e1a2), -DRB1*0701 (b3a2), and -DRB1*1101 (b2a2). CONCLUSIONS: The negative associations of a particular bcr-abl transcript with specific HLA alleles suggests that these alleles play a critical role in presenting peptides derived from the chimeric proteins and eliciting a successful T-cell cytotoxic response. Knowledge of differential associations between HLA phenotypes and bcr-abl fusion transcript types would help in developing better strategies for immunization with the bcr-abl peptides against t(9;22) (q34;q11)-positive leukemia

    Rationale for combination therapy of chronic myelogenous leukaemia with imatinib and irradiation or alkylating agents: implications for pretransplant conditioning

    Get PDF
    The tyrosine kinase activity of the BCR–ABL oncoprotein results in reduced apoptosis and thus prolongs survival of chronic myelogenous leukaemia cells. The tyrosine kinase inhibitor imatinib (formerly STI571) was reported to selectively suppress the proliferation of BCR–ABL-positive cells. Assuming that imatinib could be included in pretransplantation conditioning therapies, we tested whether combinations of imatinib and γ-irradiation or alkylating agents such as busulfan or treosulfan would display synergistic activity in BCR–ABL-positive chronic myelogenous leukaemia BV173 and EM-3 cell lines. Further, primary cells of untreated chronic myelogenous leukaemia patients were assayed for colony forming ability under combination therapy with imatinib. Additionally, the cytotoxic effect of these combinations on BCR–ABL-negative cells was investigated. In the cell lines a tetrazolium based MTT assay was used to quantify growth inhibition after exposure to cytotoxic drugs alone or to combinations with imatinib. Irradiation was applied prior to exposure to imatinib. Interaction of drugs was analysed using the median-effect method of Chou and Talalay. The combination index was calculated according to the classic isobologram equation. The combination imatinib + γ-irradiation proved to be significantly synergistic over a broad range of cell growth inhibition levels in both BCR–ABL-positive cell lines and produced the strongest reduction in primary chronic myelogenous leukaemia colony-forming progenitor cells. Combinations of imatinib + busulfan and imatinib + treosulfan showed merely additive to antagonistic effects. Imatinib did not potentiate the effects of irradiation or cytotoxic agents in BCR–ABL-negative cells. Our data provide the basis to further develop imatinib-containing conditioning therapies for stem cell transplantation in chronic myelogenous leukaemia

    P-loop mutations and novel therapeutic approaches for imatinib failures in chronic myeloid leukemia

    Get PDF
    Imatinib was the first BCR-ABL-targeted agent approved for the treatment of patients with chronic myeloid leukemia (CML) and confers significant benefit for most patients; however, a substantial number of patients are either initially refractory or develop resistance. Point mutations within the ABL kinase domain of the BCR-ABL fusion protein are a major underlying cause of resistance. Of the known imatinib-resistant mutations, the most frequently occurring involve the ATP-binding loop (P-loop). In vitro evidence has suggested that these mutations are more oncogenic with respect to other mutations and wild type BCR-ABL. Dasatinib and nilotinib have been approved for second-line treatment of patients with CML who demonstrate resistance (or intolerance) to imatinib. Both agents have marked activity in patients resistant to imatinib; however, they have differential activity against certain mutations, including those of the P-loop. Data from clinical trials suggest that dasatinib may be more effective vs. nilotinib for treating patients harboring P-loop mutations. Other mutations that are differentially sensitive to the second-line tyrosine kinase inhibitors (TKIs) include F317L and F359I/V, which are more sensitive to nilotinib and dasatinib, respectively. P-loop status in patients with CML and the potency of TKIs against P-loop mutations are key determinants for prognosis and response to treatment. This communication reviews the clinical importance of P-loop mutations and the efficacy of the currently available TKIs against them

    Time-dependent effects of imatinib in human leukaemia cells: a kinetic NMR-profiling study

    Get PDF
    The goal of this study was to evaluate the time course of metabolic changes in leukaemia cells treated with the Bcr-Abl tyrosine kinase inhibitor imatinib. Human Bcr-Abl+ K562 cells were incubated with imatinib in a dose-escalating manner (starting at 0.1 μM with a weekly increase of 0.1 μM imatinib) for up to 5 weeks. Nuclear magnetic resonance spectroscopy and liquid-chromatography mass spectrometry were performed to assess a global metabolic profile, including glucose metabolism, energy state, lipid metabolism and drug uptake, after incubation with imatinib. Initially, imatinib treatment completely inhibited the activity of Bcr-Abl tyrosine kinase, followed by the inhibition of cell glycolytic activity and glucose uptake. This was accompanied by the increased mitochondrial activity and energy production. With escalating imatinib doses, the process of cell death rapidly progressed. Phosphocreatine and NAD+ concentrations began to decrease, and mitochondrial activity, as well as the glycolysis rate, was further reduced. Subsequently, the synthesis of lipids as necessary membrane precursors for apoptotic bodies was accelerated. The concentrations of the Kennedy pathway intermediates, phosphocholine and phosphatidylcholine, were reduced. After 4 weeks of exposure to imatinib, the secondary necrosis associated with decrease in the mitochondrial and glycolytic activity occurred and was followed by a shutdown of energy production and cell death. In conclusion, monitoring of metabolic changes in cells exposed to novel signal transduction modulators supplements molecular findings and provides further mechanistic insights into longitudinal changes of the mitochondrial and glycolytic pathways of oncogenesis
    corecore