44 research outputs found

    Serum procalcitonin and CRP levels in non-alcoholic fatty liver disease: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both C reactive protein (CRP) and procalcitonin (PCT) are well known acute phase reactant proteins. CRP was reported to increase in metabolic syndrome and type-2 diabetes. Similarly altered level of serum PCT was found in chronic liver diseases and cirrhosis. The liver is considered the main source of CRP and a source of PCT, however, the serum PCT and CRP levels in non-alcoholic fatty liver disease (NAFLD) were not compared previously. Therefore we aimed to study the diagnostic and discriminative role of serum PCT and CRP in NAFLD.</p> <p>Methods</p> <p>Fifty NAFLD cases and 50 healthy controls were included to the study. Liver function tests were measured, body mass index was calculated, and insulin resistance was determined by using a homeostasis model assessment (HOMA-IR). Ultrasound evaluation was performed for each subject. Serum CRP was measured with nephalometric method. Serum PCT was measured with Kryptor based system.</p> <p>Results</p> <p>Serum PCT levels were similar in steatohepatitis (n 20) and simple steatosis (n 27) patients, and were not different than the control group (0.06 ± 0.01, 0.04 ± 0.01 versus 0.06 ± 0.01 ng/ml respectively). Serum CRP levels were significantly higher in simple steatosis, and steatohepatitis groups compared to healthy controls (7.5 ± 1.6 and 5.2 ± 2.5 versus 2.9 ± 0.5 mg/dl respectively p < 0.01). CRP could not differentiate steatohepatitis from simple steatosis. Beside, three patients with focal fatty liver disease had normal serum CRP levels.</p> <p>Conclusion</p> <p>Serum PCT was within normal ranges in patients with simple steatosis or steatohepatitis and has no diagnostic value. Serum CRP level was increased in NAFLD compared to controls. CRP can be used as an additional marker for diagnosis of NAFLD but it has no value in discrimination of steatohepatitis from simple steatosis.</p

    Comparative Live-Cell Imaging Analyses of SPA-2, BUD-6 and BNI-1 in Neurospora crassa Reveal Novel Features of the Filamentous Fungal Polarisome

    Get PDF
    A key multiprotein complex involved in regulating the actin cytoskeleton and secretory machinery required for polarized growth in fungi, is the polarisome. Recognized core constituents in budding yeast are the proteins Spa2, Pea2, Aip3/Bud6, and the key effector Bni1. Multicellular fungi display a more complex polarized morphogenesis than yeasts, suggesting that the filamentous fungal polarisome might fulfill additional functions. In this study, we compared the subcellular organization and dynamics of the putative polarisome components BUD-6 and BNI-1 with those of the bona fide polarisome marker SPA-2 at various developmental stages of Neurospora crassa. All three proteins exhibited a yeast-like polarisome configuration during polarized germ tube growth, cell fusion, septal pore plugging and tip repolarization. However, the localization patterns of all three proteins showed spatiotemporally distinct characteristics during the establishment of new polar axes, septum formation and cytokinesis, and maintained hyphal tip growth. Most notably, in vegetative hyphal tips BUD-6 accumulated as a subapical cloud excluded from the Spitzenkörper (Spk), whereas BNI-1 and SPA-2 partially colocalized with the Spk and the tip apex. Novel roles during septal plugging and cytokinesis, connected to the reinitiation of tip growth upon physical injury and conidial maturation, were identified for BUD-6 and BNI-1, respectively. Phenotypic analyses of gene deletion mutants revealed additional functions for BUD-6 and BNI-1 in cell fusion regulation, and the maintenance of Spk integrity. Considered together, our findings reveal novel polarisome-independent functions of BUD-6 and BNI-1 in Neurospora, but also suggest that all three proteins cooperate at plugged septal pores, and their complex arrangement within the apical dome of mature hypha might represent a novel aspect of filamentous fungal polarisome architecture

    The multiple faces of self-assembled lipidic systems

    Get PDF
    Lipids, the building blocks of cells, common to every living organisms, have the propensity to self-assemble into well-defined structures over short and long-range spatial scales. The driving forces have their roots mainly in the hydrophobic effect and electrostatic interactions. Membranes in lamellar phase are ubiquitous in cellular compartments and can phase-separate upon mixing lipids in different liquid-crystalline states. Hexagonal phases and especially cubic phases can be synthesized and observed in vivo as well. Membrane often closes up into a vesicle whose shape is determined by the interplay of curvature, area difference elasticity and line tension energies, and can adopt the form of a sphere, a tube, a prolate, a starfish and many more. Complexes made of lipids and polyelectrolytes or inorganic materials exhibit a rich diversity of structural morphologies due to additional interactions which become increasingly hard to track without the aid of suitable computer models. From the plasma membrane of archaebacteria to gene delivery, self-assembled lipidic systems have left their mark in cell biology and nanobiotechnology; however, the underlying physics is yet to be fully unraveled

    Generation of myeloid-derived suppressor cells using prostaglandin E2

    Get PDF
    Myeloid-derived suppressor cells (MDSCs) are natural immunosuppressive cells and endogenous inhibitors of the immune system. We describe a simple and clinically-compatible method of generating large numbers of MDSCs, using the cultures of peripheral blood-isolated monocytes supplemented with prostaglandin E2 (PGE2). We observed that PGE2 induces endogenous COX2 expression in cultured monocytes, blocking their differentiation into CD1a+ DCs and inducing the expression of IDO1, IL-4Ralpha, NOS2 and IL-10, typical MDSC-associated suppressive factors. The establishment of a positive feedback loop between PGE2 and COX2, the key regulator of PGE2 synthesis is necessary and sufficient to promote the development of CD1a+ DCs to CD14+CD33+CD34+ monocytic MDSCs in GM-CSF/IL-4-supplemented monocyte cultures, for their stability, production of multiple immunosuppressive mediators and CTL-suppressive function. In addition to PGE2, also selective EP2- and EP4-agonists, but not EP3/1 agonists, induce the MDSCs development, suggesting that other activators of the EP2- and EP2-driven signaling pathway (adenylate cyclase/cAMP/PKA/CREB) may be used to promote the development of suppressive cells. Our observations provide for a simple method to generate large numbers of MDSCs for the immunotherapy of autoimmune diseases, chronic inflammatory disorders and transplant rejection

    Adverse drug events resulting from use of drugs with sulphonamide-containing anti-malarials and artemisinin-based ingredients: findings on incidence and household costs from three districts with routine demographic surveillance systems in rural Tanzania.

    Get PDF
    BACKGROUND: Anti-malarial regimens containing sulphonamide or artemisinin ingredients are widely used in malaria-endemic countries. However, evidence of the incidence of adverse drug reactions (ADR) to these drugs is limited, especially in Africa, and there is a complete absence of information on the economic burden such ADR place on patients. This study aimed to document ADR incidence and associated household costs in three high malaria transmission districts in rural Tanzania covered by demographic surveillance systems. METHODS: Active and passive surveillance methods were used to identify ADR from sulphadoxine-pyrimethamine (SP) and artemisinin (AS) use. ADR were identified by trained clinicians at health facilities (passive surveillance) and through cross-sectional household surveys (active surveillance). Potential cases were followed up at home, where a complete history and physical examination was undertaken, and household cost data collected. Patients were classified as having 'possible' or 'probable' ADR by a physician. RESULTS: A total of 95 suspected ADR were identified during a two-year period, of which 79 were traced, and 67 reported use of SP and/or AS prior to ADR onset. Thirty-four cases were classified as 'probable' and 33 as 'possible' ADRs. Most (53) cases were associated with SP monotherapy, 13 with the AS/SP combination (available in one of the two areas only), and one with AS monotherapy. Annual ADR incidence per 100,000 exposures was estimated based on 'probable' ADR only at 5.6 for AS/SP in combination, and 25.0 and 11.6 for SP monotherapy. Median ADR treatment costs per episode ranged from US2.23forthosemakingasingleprovidervisittoUS2.23 for those making a single provider visit to US146.93 for patients with four visits. Seventy-three per cent of patients used out-of-pocket funds or sold part of their farm harvests to pay for treatment, and 19% borrowed money. CONCLUSION: Both passive and active surveillance methods proved feasible methods for anti-malarial ADR surveillance, with active surveillance being an important complement to facility-based surveillance, given the widespread practice of self-medication. Household costs associated with ADR treatment were high and potentially catastrophic. Efforts should be made to both improve pharmacovigilance across Africa and to identify strategies to reduce the economic burden endured by households suffering from ADR
    corecore