54 research outputs found

    Environmental risk assessment of GE plants under low-exposure conditions

    Get PDF
    The requirement for environmental risk assessment (ERA) of genetically engineered (GE) plants prior to large scale or commercial introduction into the environment is well established in national laws and regulations, as well as in international agreements. Since the first introductions of GE plants in commercial agriculture in the 1990s, a nearly universal paradigm has emerged for conducting these assessments based on a few guiding principles. These include the concept of case-by-case assessment, the use of comparative assessments, and a focus of the ERA on characteristics of the plant, the introduced trait, and the receiving environment as well as the intended use. In practice, however, ERAs for GE plants have frequently focused on achieving highly detailed characterizations of potential hazards at the expense of consideration of the relevant levels of exposure. This emphasis on exhaustive hazard characterization can lead to great difficulties when applied to ERA for GE plants under low-exposure conditions. This paper presents some relevant considerations for conducting an ERA for a GE plant in a low-exposure scenario in the context of the generalized ERA paradigm, building on discussions and case studies presented during a session at ISBGMO 12

    Assessing Biofuel Crop Invasiveness: A Case Study

    Get PDF
    BACKGROUND: There is widespread interest in biofuel crops as a solution to the world's energy needs, particularly in light of concerns over greenhouse-gas emissions. Despite reservations about their adverse environmental impacts, no attempt has been made to quantify actual, relative or potential invasiveness of terrestrial biofuel crops at an appropriate regional or international scale, and their planting continues to be largely unregulated. METHODOLOGY/PRINCIPAL FINDINGS: Using a widely accepted weed risk assessment system, we analyzed a comprehensive list of regionally suitable biofuel crops to show that seventy percent have a high risk of becoming invasive versus one-quarter of non-biofuel plant species and are two to four times more likely to establish wild populations locally or be invasive in Hawaii or in other locations with a similar climate. CONCLUSIONS/SIGNIFICANCE: Because of climatic and ecological similarities, predictions of biofuel crop invasiveness in Hawaii are applicable to other vulnerable island and subtropical ecosystems worldwide. We demonstrate the utility of an accessible and scientifically proven risk assessment protocol that allows users to predict if introduced species will become invasive in their region of interest. Other evidence supports the contention that propagule pressure created by extensive plantings will exacerbate invasions, a scenario expected with large-scale biofuel crop cultivation. Proactive measures, such as risk assessments, should be employed to predict invasion risks, which could then be mitigated via implementation of appropriate planting policies and adoption of the "polluter-pays" principle

    Predicting global invasion risks: a management tool to prevent future introductions

    Get PDF
    Predicting regions at risk from introductions of non-native species and the subsequent invasions is a fundamental aspect of horizon scanning activities that enable the development of more effective preventative actions and planning of management measures. The Asian cyprinid fish topmouth gudgeon Pseudorasbora parva has proved highly invasive across Europe since its introduction in the 1960s. In addition to direct negative impacts on native fish populations, P. parva has potential for further damage through transmission of an emergent infectious disease, known to cause mortality in other species. To quantify its invasion risk, in regions where it has yet to be introduced, we trained 900 ecological niche models and constructed an Ensemble Model predicting suitability, then integrated a proxy for introduction likelihood. This revealed high potential for P. parva to invade regions well beyond its current invasive range. These included areas in all modelled continents, with several hotspots of climatic suitability and risk of introduction. We believe that these methods are easily adapted for a variety of other invasive species and that such risk maps could be used by policy-makers and managers in hotspots to formulate increased surveillance and early-warning systems that aim to prevent introductions and subsequent invasions

    Time since Introduction, Seed Mass, and Genome Size Predict Successful Invaders among the Cultivated Vascular Plants of Hawaii

    Get PDF
    Extensive economic and environmental damage has been caused by invasive exotic plant species in many ecosystems worldwide. Many comparative studies have therefore attempted to predict, from biological traits, which species among the pool of naturalized non-natives become invasive. However, few studies have investigated which species establish and/or become pests from the larger pool of introduced species and controlled for time since introduction. Here we present results from a study aimed at quantifying predicting three classes of invasive species cultivated in Hawaii. Of 7,866 ornamental species cultivated in Hawaii between 1840 and 1999, 420 (5.3%) species naturalized, 141 (1.8%) have been classified as weeds, and 39 (0.5%) were listed by the state of Hawaii as noxious. Of the 815 species introduced >80 years ago, 253 (31%) have naturalized, 90 (11%) are classed as weeds, and 22 (3%) as noxious by the state of Hawaii. Using boosted regression trees we classified each group with nearly 90% accuracy, despite incompleteness of data and the low proportion of naturalized or pest species. Key biological predictors were seed mass and highest chromosome number standardized by genus which, when data on residence time was removed, were able to predict all three groups with 76–82% accuracy. We conclude that, when focused on a single region, screening for potential weeds or noxious plants based on a small set of biological traits can be achieved with sufficient accuracy for policy and management purposes
    corecore