152 research outputs found

    A Novel Pathogenic Mechanism of Highly Pathogenic Avian Influenza H5N1 Viruses Involves Hemagglutinin Mediated Resistance to Serum Innate Inhibitors

    Get PDF
    In this study, the effect of innate serum inhibitors on influenza virus infection was addressed. Seasonal influenza A(H1N1) and A(H3N2), 2009 pandemic A(H1N1) (H1N1pdm) and highly pathogenic avian influenza (HPAI) A(H5N1) viruses were tested with guinea pig sera negative for antibodies against all of these viruses as evaluated by hemagglutination-inhibition and microneutralization assays. In the presence of serum inhibitors, the infection by each virus was inhibited differently as measured by the amount of viral nucleoprotein produced in Madin-Darby canine kidney cells. The serum inhibitors inhibited seasonal influenza A(H3N2) virus the most, while the effect was less in seasonal influenza A(H1N1) and H1N1pdm viruses. The suppression by serum inhibitors could be reduced by heat inactivation or treatment with receptor destroying enzyme. In contrast, all H5N1 strains tested were resistant to serum inhibitors. To determine which structure (hemagglutinin (HA) and/or neuraminidase (NA)) on the virus particles that provided the resistance, reverse genetics (rg) was applied to construct chimeric recombinant viruses from A/Puerto Rico/8/1934(H1N1) (PR8) plasmid vectors. rgPR8-H5 HA and rgPR8-H5 HANA were resistant to serum inhibitors while rgPR8-H5 NA and PR8 A(H1N1) parental viruses were sensitive, suggesting that HA of HPAI H5N1 viruses bestowed viral resistance to serum inhibition. These results suggested that the ability to resist serum inhibition might enable the viremic H5N1 viruses to disseminate to distal end organs. The present study also analyzed for correlation between susceptibility to serum inhibitors and number of glycosylation sites present on the globular heads of HA and NA. H3N2 viruses, the subtype with highest susceptibility to serum inhibitors, harbored the highest number of glycosylation sites on the HA globular head. However, this positive correlation cannot be drawn for the other influenza subtypes

    Vaccines against toxoplasma gondii : challenges and opportunities

    Get PDF
    Development of vaccines against Toxoplasma gondii infection in humans is of high priority, given the high burden of disease in some areas of the world like South America, and the lack of effective drugs with few adverse effects. Rodent models have been used in research on vaccines against T. gondii over the past decades. However, regardless of the vaccine construct, the vaccines have not been able to induce protective immunity when the organism is challenged with T. gondii, either directly or via a vector. Only a few live, attenuated T. gondii strains used for immunization have been able to confer protective immunity, which is measured by a lack of tissue cysts after challenge. Furthermore, challenge with low virulence strains, especially strains with genotype II, will probably be insufficient to provide protection against the more virulent T. gondii strains, such as those with genotypes I or II, or those genotypes from South America not belonging to genotype I, II or III. Future studies should use animal models besides rodents, and challenges should be performed with at least one genotype II T. gondii and one of the more virulent genotypes. Endpoints like maternal-foetal transmission and prevention of eye disease are important in addition to the traditional endpoint of survival or reduction in numbers of brain cysts after challenge

    Determinants of cardiac troponin T elevation in COPD exacerbation – a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac Troponin T (cTnT) elevation during exacerbations of chronic obstructive pulmonary disease (COPD) is associated with increased mortality the first year after hospital discharge. The factors associated with cTnT elevation in COPD are not known.</p> <p>Methods</p> <p>From our hospital's database, all patients admitted with COPD exacerbation in 2000–03 were identified. 441 had measurement of cTnT performed. Levels of cTnT ≥ 0.04 μg/l were considered elevated. Clinical and historical data were retrieved from patient records, hospital and laboratory databases. Odds ratios for cTnT elevation were calculated using logistic regression.</p> <p>Results</p> <p>120 patients (27%) had elevated cTnT levels. The covariates independently associated with elevated cTnT were increasing neutrophil count, creatinine concentration, heart rate and Cardiac Infarction Injury Score (CIIS), and decreasing hemoglobin concentration. The adjusted odds ratios (95% confidence intervals in parentheses) for cTnT elevation were 1.52 (1.20–1.94) for a 5 × 10<sup>6</sup>/ml increase in neutrophils, 1.21 (1.12–1.32) for a 10 μmol/l increase in creatinine, 0.80 (0.69–0.92) for a 1 mg/dl increase in hemoglobin, 1.24 (1.09–1.42) for a 10 beats/minute increase in heart rate and 1.44 (1.15–1.82) for a 10 point increase in CIIS.</p> <p>Conclusion</p> <p>Multiple factors are associated with cTnT elevation, probably reflecting the wide panorama of comorbid conditions typically seen in COPD. The positive association between neutrophils and cTnT elevation is compatible with the concept that an exaggerated inflammatory response in COPD exacerbation may predispose for myocardial injury.</p

    Deciphering the Catalytic Machinery in 30S Ribosome Assembly GTPase YqeH

    Get PDF
    YqeH, a circularly permuted GTPase (cpGTPase), which is conserved across bacteria and eukaryotes including humans is important for the maturation of small (30S) ribosomal subunit in Bacillus subtilis. Recently, we have shown that it binds 30S in a GTP/GDP dependent fashion. However, the catalytic machinery employed to hydrolyze GTP is not recognized for any of the cpGTPases, including YqeH. This is because they possess a hydrophobic substitution in place of a catalytic glutamine (present in Ras-like GTPases). Such GTPases were categorized as HAS-GTPases and were proposed to follow a catalytic mechanism, different from the Ras-like proteins.MnmE, another HAS-GTPase, but not circularly permuted, utilizes a potassium ion and water mediated interactions to drive GTP hydrolysis. Though the G-domain of MnmE and YqeH share only approximately 25% sequence identity, the conservation of characteristic sequence motifs between them prompted us to probe GTP hydrolysis machinery in YqeH, by employing homology modeling in conjunction with biochemical experiments. Here, we show that YqeH too, uses a potassium ion to drive GTP hydrolysis and stabilize the transition state. However, unlike MnmE, it does not dimerize in the transition state, suggesting alternative ways to stabilize switches I and II. Furthermore, we identify a potential catalytic residue in Asp-57, whose recognition, in the absence of structural information, was non-trivial due to the circular permutation in YqeH. Interestingly, when compared with MnmE, helix alpha2 that presents Asp-57 is relocated towards the N-terminus in YqeH. An analysis of the YqeH homology model, suggests that despite such relocation, Asp-57 may facilitate water mediated catalysis, similarly as the catalytic Glu-282 of MnmE. Indeed, an abolished catalysis by D57I mutant supports this inference.An uncommon means to achieve GTP hydrolysis utilizing a K(+) ion has so far been demonstrated only for MnmE. Here, we show that YqeH also utilizes a similar mechanism. While the catalytic machinery is similar in both, mechanistic differences may arise based on the way they are deployed. It appears that K(+) driven mechanism emerges as an alternative theme to stabilize the transition state and hydrolyze GTP in a subset of GTPases, such as the HAS-GTPases

    Distribution, size, shape, growth potential and extent of abdominal aortic calcified deposits predict mortality in postmenopausal women

    Get PDF
    Background: Aortic calcification is a major risk factor for death from cardiovascular disease. We investigated the relationship between mortality and the composite markers of number, size, morphology and distribution of calcified plaques in the lumbar aorta.Methods: 308 postmenopausal women aged 48-76 were followed for 8.3 ± 0.3 years, with deaths related to cardiovascular disease, cancer, or other causes being recorded. From lumbar X-rays at baseline the number (NCD), size, morphology and distribution of aortic calcification lesions were scored and combined into one Morphological Atherosclerotic Calcification Distribution (MACD) index. The hazard ratio for mortality was calculated for the MACD and for three other commonly used predictors: the EU SCORE card, the Framingham Coronary Heart Disease Risk Score (Framingham score), and the gold standard Aortic Calcification Severity score (AC24) developed from the Framingham Heart Study cohorts.Results: All four scoring systems showed increasing age, smoking, and raised triglyceride levels were the main predictors of mortality after adjustment for all other metabolic and physical parameters. The SCORE card and the Framingham score resulted in a mortality hazard ratio increase per standard deviation (HR/SD) of 1.8 (1.51-2.13) and 2.6 (1.87-3.71), respectively. Of the morphological x-ray based measures, NCD revealed a HR/SD >2 adjusted for SCORE/Framingham. The MACD index scoring the distribution, size, morphology and number of lesions revealed the best predictive power for identification of patients at risk of mortality, with a hazard ratio of 15.6 (p < 0.001) for the 10% at greatest risk of death.Conclusions: This study shows that it is not just the extent of aortic calcification that predicts risk of mortality, but also the distribution, shape and size of calcified lesions. The MACD index may provide a more sensitive predictor of mortality from aortic calcification than the commonly used AC24 and SCORE/Framingham point card systems

    British Valued Life Activities Scale [British VLAs]

    Get PDF
    Background The Valued Life Activities Scale (VLAs) measures difficulty in daily activities and social participation. With various versions involving a different number of items, we have linguistically and culturally adopted the full VLAs (33-items) and psychometrically tested it in adults with rheumatic and musculoskeletal diseases in the United Kingdom. Methods Participants with Rheumatoid Arthritis, Ankylosing Spondylitis, Chronic Pain/ Fibromyalgia, Chronic Hand/ Upper Limb Conditions, Osteoarthritis, Systemic Lupus, Systemic Sclerosis and Primary Sjogren’s Syndrome were recruited from out-patient clinics in National Health Service Hospitals, General Practice and patient organisations in the UK. Phase1 involved linguistic and cultural adaptation: forward translation to British English; synthesis; expert panel review and cognitive debriefing interviews. In Phase2 participants completed postal questionnaires to assess internal construct validity using (i) Confirmatory Factor Analysis (CFA) (ii) Mokken scaling and (iii) Rasch model. Results Responders (n = 1544) had mean age of 59 years (SD13.3) and 77.2% women. A CFA failed to support a total score from the 33-items (Chi Square 3552:df 464: p < 0.0001). Mokken scaling indicated a strong non-parametric association between items. Fit to the Rasch model indicated that the VLAs was characterised by multidimensionality and item misfit, which may have been influenced by clusters of residual item correlations. An item banking approach resolved a 25-item calibrated set whose application could accommodate the ‘does not apply to me’ response option. Conclusions The UK version of the VLAs failed to satisfy classical and modern psychometric standards for complete item sets. However, as the scale is not usually applied in complete format, an item bank approach calibrated 25 items with fit to the Rasch model. Suitable Computer Adaptive Testing (CAT) software could implement the item set, giving patients the choice of whether an item applies to them, or not

    The Enterovirus 71 A-particle Forms a Gateway to Allow Genome Release: A CryoEM Study of Picornavirus Uncoating

    Get PDF
    Since its discovery in 1969, enterovirus 71 (EV71) has emerged as a serious worldwide health threat. This human pathogen of the picornavirus family causes hand, foot, and mouth disease, and also has the capacity to invade the central nervous system to cause severe disease and death. Upon binding to a host receptor on the cell surface, the virus begins a two-step uncoating process, first forming an expanded, altered "A-particle", which is primed for genome release. In a second step after endocytosis, an unknown trigger leads to RNA expulsion, generating an intact, empty capsid. Cryo-electron microscopy reconstructions of these two capsid states provide insight into the mechanics of genome release. The EV71 A-particle capsid interacts with the genome near the icosahedral two-fold axis of symmetry, which opens to the external environment via a channel ~10 Å in diameter that is lined with patches of negatively charged residues. After the EV71 genome has been released, the two-fold channel shrinks, though the overall capsid dimensions are conserved. These structural characteristics identify the two-fold channel as the site where a gateway forms and regulates the process of genome release. © 2013 Shingler et al

    Checkpoint Signaling, Base Excision Repair, and PARP Promote Survival of Colon Cancer Cells Treated with 5-Fluorodeoxyuridine but Not 5-Fluorouracil

    Get PDF
    The fluoropyrimidines 5-fluorouracil (5-FU) and FdUrd (5-fluorodeoxyuridine; floxuridine) are the backbone of chemotherapy regimens for colon cancer and other tumors. Despite their widespread use, it remains unclear how these agents kill tumor cells. Here, we have analyzed the checkpoint and DNA repair pathways that affect colon tumor responses to 5-FU and FdUrd. These studies demonstrate that both FdUrd and 5-FU activate the ATR and ATM checkpoint signaling pathways, indicating that they cause genotoxic damage. Notably, however, depletion of ATM or ATR does not sensitize colon cancer cells to 5-FU, whereas these checkpoint pathways promote the survival of cells treated with FdUrd, suggesting that FdUrd exerts cytotoxicity by disrupting DNA replication and/or inducing DNA damage, whereas 5-FU does not. We also found that disabling the base excision (BER) repair pathway by depleting XRCC1 or APE1 sensitized colon cancer cells to FdUrd but not 5-FU. Consistent with a role for the BER pathway, we show that small molecule poly(ADP-ribose) polymerase 1/2 (PARP) inhibitors, AZD2281 and ABT-888, remarkably sensitized both mismatch repair (MMR)-proficient and -deficient colon cancer cell lines to FdUrd but not to 5-FU. Taken together, these studies demonstrate that the roles of genotoxin-induced checkpoint signaling and DNA repair differ significantly for these agents and also suggest a novel approach to colon cancer therapy in which FdUrd is combined with a small molecule PARP inhibitor

    The LabelHash algorithm for substructure matching

    Get PDF
    Background: There is an increasing number of proteins with known structure but unknown function. Determining their function would have a significant impact on understanding diseases and designing new therapeutics. However, experimental protein function determination is expensive and very time-consuming. Computational methods can facilitate function determination by identifying proteins that have high structural and chemical similarity. Results: We present LabelHash, a novel algorithm for matching substructural motifs to large collections of protein structures. The algorithm consists of two phases. In the first phase the proteins are preprocessed in a fashion that allows for instant lookup of partial matches to any motif. In the second phase, partial matches for a given motif are expanded to complete matches. The general applicability of the algorithm is demonstrated with three different case studies. First, we show that we can accurately identify members of the enolase superfamily with a single motif. Next, we demonstrate how LabelHash can complement SOIPPA, an algorithm for motif identification and pairwise substructure alignment. Finally, a large collection of Catalytic Site Atlas motifs is used to benchmark the performance of the algorithm. LabelHash runs very efficiently in parallel; matching a motif against all proteins in the 95 % sequence identity filtered non-redundant Protein Data Bank typically takes no more than a few minutes. The LabelHash algorithm is available through a web server and as a suite of standalone programs a
    corecore