76 research outputs found

    FLPe functions in zebrafish embryos

    Get PDF
    To assay the efficiency of the FLP/FRT site-specific recombination system in Danio rerio, a construct consisting of a muscle-specific promoter driving EGFP flanked by FRT sites was developed. FLPe capped RNA was microinjected into transgenic single cell stage zebrafish embryos obtained by crossing hemizygous transgenic males with wild-type females. By 48 h post fertilization (hpf), the proportion of embryos displaying green fluorescence following FLPe RNA microinjection was significantly lower (7.7%; P < 0.001) than would be expected from a cross in the absence of the recombinase (50%). Embryos that retained fluorescence displayed marked mosaicism. Inheritance of the excised transgene in non-fluorescent, transgenic embryos was verified by PCR analysis and FLPe-mediated recombination was confirmed by DNA sequencing. Sperm derived from confirmed transgenic males in these experiments was used to fertilize wild-type eggs to determine whether germline excision of the transgene had occurred. Clutches sired by FLPe-microinjected males contained 0–4% fluorescent embryos. Transgenic males that were phenotypically wild-type produced no fluorescent progeny, demonstrating complete excision of the transgene from their germline. FLPe microinjected males that retained some fluorescent muscle expression produced a small proportion of fluorescent offspring, suggesting that in mosaic males not all germline cells had undergone FLPe-mediated transgene excision. Our results show that FLPe, which is derived from Saccharomyces cerevisiae, is an efficient recombinase in zebrafish maintained at 28.5°C

    Use of mechanical circulatory support in patients with non-ischaemic cardiogenic shock

    Get PDF
    Aims Despite its high incidence and mortality risk, there is no evidence-based treatment for non-ischaemic cardiogenic shock (CS). The aim of this study was to evaluate the use of mechanical circulatory support (MCS) for non-ischaemic CS treatment.Methods and results In this multicentre, international, retrospective study, data from 890 patients with non-ischaemic CS, defined as CS due to severe de-novo or acute-on-chronic heart failure with no need for urgent revascularization, treated with or without active MCS, were collected. The association between active MCS use and the primary endpoint of 30-day mortality was assessed in a 1:1 propensity-matched cohort. MCS was used in 386 (43%) patients. Patients treated with MCS presented with more severe CS (37% vs. 23% deteriorating CS, 30% vs. 25% in extremis CS) and had a lower left ventricular ejection fraction at baseline (21% vs. 25%). After matching, 267 patients treated with MCS were compared with 267 patients treated without MCS. In the matched cohort, MCS use was associated with a lower 30-day mortality (hazard ratio 0.76, 95% confidence interval 0.59-0.97). This finding was consistent through all tested subgroups except when CS severity was considered, indicating risk reduction especially in patients with deteriorating CS. However, complications occurred more frequently in patients with MCS; e.g. severe bleeding (16.5% vs. 6.4%) and access-site related ischaemia (6.7% vs. 0%).Conclusion In patients with non-ischaemic CS, MCS use was associated with lower 30-day mortality as compared to medical therapy only, but also with more complications. Randomized trials are needed to validate these findings.[GRAPHICS

    A Non-Specific Effect Associated with Conditional Transgene Expression Based on Cre-loxP Strategy in Mice

    Get PDF
    Transgenes flanked by loxP sites have been widely used to generate transgenic mice where the transgene expression can be controlled spatially and temporally by Cre recombinase. Data from this approach has led to important conclusions in cancer, neurodevelopment and neurodegeneration. Using this approach to conditionally express micro RNAs (miRNAs) in mice, we found that Cre-mediated recombination in neural progenitor cells caused microcephaly in five of our ten independent transgenic lines. This effect was not associated with the types or the quantity of miRNAs being expressed, nor was it associated with specific target knockdown. Rather, it was correlated with the presence of multiple tandem transgene copies and inverted (head-to-head or tail-to-tail) transgene repeats. The presence of these inverted repeats caused a high level of cell death in the ventricular zone of the embryonic brain, where Cre was expressed. Therefore, results from this Cre-loxP approach to generate inducible transgenic alleles must be interpreted with caution and conclusions drawn in previous reports may need reexamination

    The Role of Attention in Ambiguous Reversals of Structure-From-Motion

    Get PDF
    Multiple dots moving independently back and forth on a flat screen induce a compelling illusion of a sphere rotating in depth (structure-from-motion). If all dots simultaneously reverse their direction of motion, two perceptual outcomes are possible: either the illusory rotation reverses as well (and the illusory depth of each dot is maintained), or the illusory rotation is maintained (but the illusory depth of each dot reverses). We investigated the role of attention in these ambiguous reversals. Greater availability of attention – as manipulated with a concurrent task or inferred from eye movement statistics – shifted the balance in favor of reversing illusory rotation (rather than depth). On the other hand, volitional control over illusory reversals was limited and did not depend on tracking individual dots during the direction reversal. Finally, display properties strongly influenced ambiguous reversals. Any asymmetries between ‘front’ and ‘back’ surfaces – created either on purpose by coloring or accidentally by random dot placement – also shifted the balance in favor of reversing illusory rotation (rather than depth). We conclude that the outcome of ambiguous reversals depends on attention, specifically on attention to the illusory sphere and its surface irregularities, but not on attentive tracking of individual surface dots

    Reorganizing the Intrinsic Functional Architecture of the Human Primary Motor Cortex during Rest with Non-Invasive Cortical Stimulation

    Get PDF
    The primary motor cortex (M1) is the main effector structure implicated in the generation of voluntary movements and is directly involved in motor learning. The intrinsic horizontal neuronal connections of M1 exhibit short-term and long-term plasticity, which is a strong substrate for learning-related map reorganization. Transcranial direct current stimulation (tDCS) applied for few minutes over M1 has been shown to induce relatively long-lasting plastic alterations and to modulate motor performance. Here we test the hypothesis that the relatively long-lasting synaptic modification induced by tDCS over M1 results in the alteration of associations among populations of M1 neurons which may be reflected in changes of its functional architecture. fMRI resting-state datasets were acquired immediately before and after 10 minutes of tDCS during rest, with the anode/cathode placed over the left M1. For each functional dataset, grey-matter voxels belonging to Brodmann area 4 (BA4) were labelled and afterwards BA4 voxel-based synchronization matrices were calculated and thresholded to construct undirected graphs. Nodal network parameters which characterize the architecture of functional networks (connectivity degree, clustering coefficient and characteristic path-length) were computed, transformed to volume maps and compared before and after stimulation. At the dorsolateral-BA4 region cathodal tDCS boosted local connectedness, while anodal-tDCS enhanced long distance functional communication within M1. Additionally, the more efficient the functional architecture of M1 was at baseline, the more efficient the tDCS-induced functional modulations were. In summary, we show here that it is possible to non-invasively reorganize the intrinsic functional architecture of M1, and to image such alterations

    Conditional Stat1 Ablation Reveals the Importance of Interferon Signaling for Immunity to Listeria monocytogenes Infection

    Get PDF
    Signal transducer and activator of transcription 1 (Stat1) is a key player in responses to interferons (IFN). Mutations of Stat1 cause severe immune deficiencies in humans and mice. Here we investigate the importance of Stat1 signaling for the innate and secondary immune response to the intracellular bacterial pathogen Listeria monocytogenes (Lm). Cell type-restricted ablation of the Stat1 gene in naïve animals revealed unique roles in three cell types: macrophage Stat1 signaling protected against lethal Lm infection, whereas Stat1 ablation in dendritic cells (DC) did not affect survival. T lymphocyte Stat1 reduced survival. Type I IFN (IFN-I) signaling in T lymphocytes reportedly weakens innate resistance to Lm. Surprisingly, the effect of Stat1 signaling was much more pronounced, indicating a contribution of Stat1 to pathways other than the IFN-I pathway. In stark contrast, Stat1 activity in both DC and T cells contributed positively to secondary immune responses against Lm in immunized animals, while macrophage Stat1 was dispensable. Our findings provide the first genetic evidence that Stat1 signaling in different cell types produces antagonistic effects on innate protection against Lm that are obscured in mice with complete Stat1 deficiency. They further demonstrate a drastic change in the cell type-dependent Stat1 requirement for memory responses to Lm infection

    Visuospatial Integration: Paleoanthropological and Archaeological Perspectives

    Get PDF
    The visuospatial system integrates inner and outer functional processes, organizing spatial, temporal, and social interactions between the brain, body, and environment. These processes involve sensorimotor networks like the eye–hand circuit, which is especially important to primates, given their reliance on vision and touch as primary sensory modalities and the use of the hands in social and environmental interactions. At the same time, visuospatial cognition is intimately connected with memory, self-awareness, and simulation capacity. In the present article, we review issues associated with investigating visuospatial integration in extinct human groups through the use of anatomical and behavioral data gleaned from the paleontological and archaeological records. In modern humans, paleoneurological analyses have demonstrated noticeable and unique morphological changes in the parietal cortex, a region crucial to visuospatial management. Archaeological data provides information on hand–tool interaction, the spatial behavior of past populations, and their interaction with the environment. Visuospatial integration may represent a critical bridge between extended cognition, self-awareness, and social perception. As such, visuospatial functions are relevant to the hypothesis that human evolution is characterized by changes in brain–body–environment interactions and relations, which enhance integration between internal and external cognitive components through neural plasticity and the development of a specialized embodiment capacity. We therefore advocate the investigation of visuospatial functions in past populations through the paleoneurological study of anatomical elements and archaeological analysis of visuospatial behaviors

    Aprendizado e memória Learning and memory

    No full text
    A memória é dividida de duas grandes formas: explícita e implícita. O hipocampo é necessário para a formação das memórias explícitas, ao passo que várias outras regiões do cérebro, incluindo o estriado, a amígdala e o nucleus accumbens, estão envolvidos na formação das memórias implícitas. A formação de todas as memórias requer alterações morfológicas nas sinapses: novas sinapses devem ser formadas ou antigas precisam ser fortalecidas. Considera-se que essas alterações reflitam a base celular subjacente das memórias persistentes. Consideráveis avanços têm ocorrido na última década em relação a nossa compreensão sobre as bases moleculares da formação dessas memórias. Um regulador-chave da plasticidade sináptica é uma via de sinalização que inclui a proteína-quinase ativada por mitógenos (MAP). Como essa via é necessária para a memória e o aprendizado normais, não é surpreendente que as mutações nos membros dessa via levem a prejuízos no aprendizado. A neurofibromatose, a síndrome de Coffin-Lowry e a de Rubinstein-Taybi são três exemplos de transtornos de desenvolvimento que apresentam mutações em componentes-chave na via de sinalização da proteína-quinase MAP.<br>Memory is broadly divided into declarative and nondeclarative forms of memory. The hippocampus is required for the formation of declarative memories, while a number of other brain regions including the striatum, amygdala and nucleus accumbens are involved in the formation of nondeclarative memories. The formation of all memories require morphological changes of synapses: new ones must be formed or old ones strengthened. These changes are thought to reflect the underlying cellular basis for persistent memories. Considerable advances have occurred over the last decade in our understanding of the molecular bases of how these memories are formed. A key regulator of synaptic plasticity is a signaling pathway that includes the mitogen activated protein (MAP) kinase. As this pathway is required for normal memory and learning, it is not surprising that mutations in members of this pathway lead to disruptions in learning. Neurofibromatosis, Coffin-Lowry syndrome and Rubinstein-Taybi syndrome are three examples of developmental disorders that have mutations in key components of the MAP kinase signaling pathway
    corecore