90 research outputs found
Dietary Intake and Rural-Urban Migration in India: A Cross-Sectional Study
BACKGROUND: Migration from rural areas of India contributes to urbanisation and lifestyle change, and dietary changes may increase the risk of obesity and chronic diseases. We tested the hypothesis that rural-to-urban migrants have different macronutrient and food group intake to rural non-migrants, and that migrants have a diet more similar to urban non-migrants. METHODS AND FINDINGS: The diets of migrants of rural origin, their rural dwelling sibs, and those of urban origin together with their urban dwelling sibs were assessed by an interviewer-administered semi-quantitative food frequency questionnaire. A total of 6,509 participants were included. Median energy intake in the rural, migrant and urban groups was 2731, 3078, and 3224 kcal respectively for men, and 2153, 2504, and 2644 kcal for women (p<0.001). A similar trend was seen for overall intake of fat, protein and carbohydrates (p<0.001), though differences in the proportion of energy from these nutrients were <2%. Migrant and urban participants reported up to 80% higher fruit and vegetable intake than rural participants (p<0.001), and up to 35% higher sugar intake (p<0.001). Meat and dairy intake were higher in migrant and urban participants than rural participants (p<0.001), but varied by region. Sibling-pair analyses confirmed these results. There was no evidence of associations with time in urban area. CONCLUSIONS: Rural to urban migration appears to be associated with both positive (higher fruit and vegetables intake) and negative (higher energy and fat intake) dietary changes. These changes may be of relevance to cardiovascular health and warrant public health interventions
X-Ray Spectroscopy of Stars
(abridged) Non-degenerate stars of essentially all spectral classes are soft
X-ray sources. Low-mass stars on the cooler part of the main sequence and their
pre-main sequence predecessors define the dominant stellar population in the
galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense,
of X-ray spectra from the solar corona. X-ray emission from cool stars is
indeed ascribed to magnetically trapped hot gas analogous to the solar coronal
plasma. Coronal structure, its thermal stratification and geometric extent can
be interpreted based on various spectral diagnostics. New features have been
identified in pre-main sequence stars; some of these may be related to
accretion shocks on the stellar surface, fluorescence on circumstellar disks
due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot
stars clearly dominate the interaction with the galactic interstellar medium:
they are the main sources of ionizing radiation, mechanical energy and chemical
enrichment in galaxies. High-energy emission permits to probe some of the most
important processes at work in these stars, and put constraints on their most
peculiar feature: the stellar wind. Here, we review recent advances in our
understanding of cool and hot stars through the study of X-ray spectra, in
particular high-resolution spectra now available from XMM-Newton and Chandra.
We address issues related to coronal structure, flares, the composition of
coronal plasma, X-ray production in accretion streams and outflows, X-rays from
single OB-type stars, massive binaries, magnetic hot objects and evolved WR
stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures
(partly multiple); some corrections made after proof stag
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
The Secret Life of the Anthrax Agent Bacillus anthracis: Bacteriophage-Mediated Ecological Adaptations
Ecological and genetic factors that govern the occurrence and persistence of anthrax reservoirs in the environment are obscure. A central tenet, based on limited and often conflicting studies, has long held that growing or vegetative forms of Bacillus anthracis survive poorly outside the mammalian host and must sporulate to survive in the environment. Here, we present evidence of a more dynamic lifecycle, whereby interactions with bacterial viruses, or bacteriophages, elicit phenotypic alterations in B. anthracis and the emergence of infected derivatives, or lysogens, with dramatically altered survival capabilities. Using both laboratory and environmental B. anthracis strains, we show that lysogeny can block or promote sporulation depending on the phage, induce exopolysaccharide expression and biofilm formation, and enable the long-term colonization of both an artificial soil environment and the intestinal tract of the invertebrate redworm, Eisenia fetida. All of the B. anthracis lysogens existed in a pseudolysogenic-like state in both the soil and worm gut, shedding phages that could in turn infect non-lysogenic B. anthracis recipients and confer survival phenotypes in those environments. Finally, the mechanism behind several phenotypic changes was found to require phage-encoded bacterial sigma factors and the expression of at least one host-encoded protein predicted to be involved in the colonization of invertebrate intestines. The results here demonstrate that during its environmental phase, bacteriophages provide B. anthracis with alternatives to sporulation that involve the activation of soil-survival and endosymbiotic capabilities
Recommended from our members
Milk and dairy consumption and risk of cardiovascular diseases and all-cause mortality: dose-response meta-analysis of prospective cohort studies
With a growing number of prospective cohort studies, an updated dose-response meta-analysis of milk and dairy products with all-cause mortality, coronary heart disease (CHD) or cardiovascular disease (CVD) have been conducted. PubMed, Embase and Scopus were searched for articles published up to September 2016. Random-effect meta-analyses with summarised dose-response data were performed for total (high-fat/low-fat) dairy, milk, fermented dairy, cheese and yogurt. Non-linear associations were investigated using the spine models and heterogeneity by subgroup analyses. A total of 29 cohort studies were available for meta-analysis, with 938,465 participants and 93,158 mortality, 28,419 CHD and 25,416 CVD cases. No associations were found for total (high-fat/low-fat) dairy, and milk with the health outcomes of mortality, CHD or CVD. Inverse associations were found between total fermented dairy (included sour milk products, cheese or yogurt; per 20 g/day) with mortality (RR 0.98, 95% CI 0.97-0.99; I2 = 94.4%) and CVD risk (RR 0.98, 95% CI 0.97-0.99; I2 = 87.5%). Further analyses of individual fermented dairy of cheese and yogurt showed cheese to have a 2% lower risk of CVD (RR 0.98, 95% CI 0.95-1.00; I2 = 82.6%) per 10 g/day, but not yogurt. All of these marginally inverse associations of totally fermented dairy and cheese were attenuated in sensitivity analyses by removing one large Swedish study. This meta-analysis combining data from 29 prospective cohort studies demonstrated neutral associations between dairy products and cardiovascular and all-cause mortality. For future studies it is important to investigate in more detail how dairy products can be replaced by other foods
A mutated dph3 gene causes sensitivity of Schizosaccharomyces pombe cells to cytotoxic agents
Dph3 is involved in diphthamide modification of the eukaryotic translation elongation factor eEF2 and in Elongator-mediated modifications of tRNAs, where a 5-methoxycarbonyl-methyl moiety is added to wobble uridines. Lack of such modifications affects protein synthesis due to inaccurate translation of mRNAs at ribosomes. We have discovered that integration of markers at the msh3 locus of Schizosaccharomyces pombe impaired the function of the nearby located dph3 gene. Such integrations rendered cells sensitive to the cytotoxic drugs hydroxyurea and methyl methanesulfonate. We constructed dph3 and msh3 strains with mutated ATG start codons (ATGmut), which allowed investigating drug sensitivity without potential interference by marker insertions. The dph3- ATGmut and a dph3::loxP-ura4-loxM gene disruption strain, but not msh3-ATGmut, turned out to be sensitive to hydroxyurea and methyl methanesulfonate, likewise the strains with cassettes integrated at the msh3 locus. The fungicide sordarin, which inhibits diphthamide modified eEF2 of Saccharomyces cerevisiae, barely affected survival of wild type and msh3Δ S. pombe cells, while the dph3Δ mutant was sensitive. The msh3-ATG mutation, but not dph3Δ or the dph3-ATG mutation caused a defect in mating-type switching, indicating that the ura4 marker at the dph3 locus did not interfere with Msh3 function. We conclude that Dph3 is required for cellular resistance to the fungicide sordarin and to the cytotoxic drugs hydroxyurea and methyl methanesulfonate. This is likely mediated by efficient translation of proteins in response to DNA damage and replication stress
A reappraisal of the impact of dairy foods and milk fat on cardiovascular disease risk
Background This review provides a reappraisal of the potential effects of dairy foods, including dairy fats, on cardiovascular disease (CVD)/coronary heart disease (CHD) risk. Commodities and foods containing saturated fats are of particular focus as current public dietary recommendations are directed toward reducing the intake of saturated fats as a means to improve the overall health of the population. A conference of scientists from different perspectives of dietary fat and health was convened in order to consider the scientific basis for these recommendations. Aims This review and summary of the conference focus on four key areas related to the biology of dairy foods and fats and their potential impact on human health: (a) the effect of dairy foods on CVD in prospective cohort studies; (b) the impact of dairy fat on plasma lipid risk factors for CVD; (c) the effects of dairy fat on non-lipid risk factors for CVD; and (d) the role of dairy products as essential contributors of micronutrients in reference food patterns for the elderly. Conclusions Despite the contribution of dairy products to the saturated fatty acid composition of the diet, and given the diversity of dairy foods of widely differing composition, there is no clear evidence that dairy food consumption is consistently associated with a higher risk of CVD. Thus, recommendations to reduce dairy food consumption irrespective of the nature of the dairy product should be made with cautionJ. Bruce German, Robert A. Gibson, Ronald M. Krauss, Paul Nestel, Benoît Lamarche, Wija A. van Staveren, Jan M. Steijns, Lisette C. P. G. M. de Groot, Adam L. Lock and Frédéric Destaillat
- …