2,225 research outputs found

    Searching for a talking face: the effect of degrading the auditory signal

    Get PDF
    Previous research (e.g. McGurk and MacDonald, 1976) suggests that faces and voices are bound automatically, but recent evidence suggests that attention is involved in a task of searching for a talking face (Alsius and Soto-Faraco, 2011). We hypothesised that the processing demands of the stimuli may affect the amount of attentional resources required, and investigated what effect degrading the auditory stimulus had on the time taken to locate a talking face. Twenty participants were presented with between 2 and 4 faces articulating different sentences, and had to decide which of these faces matched the sentence that they heard. The results showed that in the least demanding auditory condition (clear speech in quiet), search times did not significantly increase when the number of faces increased. However, when speech was presented in background noise or was processed to simulate the information provided by a cochlear implant, search times increased as the number of faces increased. Thus, it seems that the amount of attentional resources required vary according to the processing demands of the auditory stimuli, and when processing load is increased then faces need to be individually attended to in order to complete the task. Based on these results we would expect cochlear-implant users to find the task of locating a talking face more attentionally demanding than normal hearing listeners

    Diffusion in an age-structured randomly switching environment

    Get PDF
    Age-structured processes are well-established in population biology, where birth and death rates often depend on the age of the underlying populations. Recently, however, different examples of age-structured processes have been considered in the context of cell motility or certain types of stochastically gated ion channels, where the state of the system is determined by a switching process with age-dependent transition rates. In this paper we consider the particular problem of diffusion on a finite interval, with randomly switching boundary conditions due to the presence of an age-structured stochastic gate at one end of the interval. When the gate is closed the particles are reflected, whereas when it is open the domain is in contact with a particle bath. We use a moments method to derive a partial differential equation for the expectations of the stochastic concentration, conditioned on the state of the gate. We then use transform methods to eliminate the residence time of the age-structured switching, resulting in non-Markovian equations for the expectations, and determine the effective steady-state concentration gradient. Our analytical results are shown to match those obtained using Monte Carlo simulations

    Interaction between switching diffusivities and cellular microstructure

    Get PDF
    Single-particle tracking experiments have recently found that C. elegans zygotes rely on space-dependent switching diffusivities to form intracellular gradients during cell polarization. The relevant proteins switch between fast-diffusing and slow-diffusing states on timescales that are much shorter than the timescale of diffusion or gradient formation. This manifests in models as a small parameter, allowing an asymptotic analysis of the gradient formation. In this paper we consider how this mechanism of rapidly switching diffusive states interacts with a locally varying periodic microstructure in the cell, incorporated through a second small parameter. We show that an asymptotic analysis based on both small parameters yields different results based on the order of limits taken and suggest an explicit relation between the two parameters for when each type of analysis is appropriate. We further investigate a mean first passage time problem for a diffusing protein to gain insight into the effects of the microstructure on the global environment

    Effective permeability of a gap junction with age-structured switching

    Get PDF
    We analyze the diffusion equation in a bounded interval with a stochastically gated interior barrier at the center of the domain. This represents a stochastically gated gap junction linking a pair of identical cells. Previous work has modeled the switching of the gate as a two-state Markov process and used the theory of diffusion in randomly switching environments to derive an expression for the effective permeability of the gap junction. In this paper we extend the analysis of gap junction permeability to the case of a gate with age-structured switching. The latter could reflect the existence of a set of hidden internal states such that the statistics of the non-Markovian two-state model matches the statistics of a higher-dimensional Markov process. Using a combination of the method of characteristics and transform methods, we solve the partial differential equations for the expectations of the stochastic concentration, conditioned on the state of the gate and after integrating out the residence time of the age-structured process. This allows us to determine the jump discontinuity of the concentration at the gap junction and thus the effective permeability. We then use stochastic analysis to show that the solution to the stochastic PDE is a certain statistic of a single Brownian particle diffusing in a stochastically fluctuating environment. In addition to providing a simple probabilistic interpretation of the stochastic PDE, this representation enables an efficient numerical approximation of the solution of the PDE by Monte Carlo simulations of a single diffusing particle. The latter is used to establish that our analytical results match those obtained from Monte Carlo simulations for a variety of age-structured distributions

    Protein concentration gradients and switching diffusions

    Get PDF
    Morphogen gradients play a vital role in developmental biology by enabling embryonic cells to infer their spatial location and determine their developmental fate accordingly. The standard mechanism for generating a morphogen gradient involves a morphogen being produced from a localized source and subsequently degrading. While this mechanism is effective over the length and time scales of tissue development, it fails over typical subcellular length scales due to the rapid dissipation of spatial asymmetries. In a recent theoretical work, we found an alternative mechanism for generating concentration gradients of diffusing molecules, in which the molecules switch between spatially constant diffusivities at switching rates that depend on the spatial location of a molecule. Independently, an experimental and computational study later found that Caenorhabditis elegans zygotes rely on this mechanism for cell polarization. In this paper, we extend our analysis of switching diffusivities to determine its role in protein concentration gradient formation. In particular, we determine how switching diffusivities modifies the standard theory and show how space-dependent switching diffusivities can yield a gradient in the absence of a localized source. Our mathematical analysis yields explicit formulas for the intracellular concentration gradient which closely match the results of previous experiments and numerical simulations

    Does blood transfusion harm cardiac surgery patients?

    Get PDF
    Over recent years there has been a substantial body of evidence demonstrating strong associations between transfusion and adverse outcomes, including myocardial, neurological and renal injury, in a range of clinical settings where transfusion is administered for reasons other than life-threatening bleeding. The strength of these associations across a range of clinical settings suggests that confounding and bias, the chief limitations of all observational studies, are unlikely to account for all of these observations. Given the wide range in transfusion rates in cardiac centres, with up to 100% of patients in some centres exposed to allogenic blood components, this evidence, albeit circumstantial, presents a strong argument for prospective randomised trials to attempt to determine, firstly, if transfusion causes adverse outcomes, and secondly, in which patient groups does the benefit of transfusion outweigh these risks? These issues are discussed in the context of an article published this month in BMC Medicine

    High Resolution Spectroscopy of Two-Dimensional Electron Systems

    Full text link
    Spectroscopic methods involving the sudden injection or ejection of electrons in materials are a powerful probe of electronic structure and interactions. These techniques, such as photoemission and tunneling, yield measurements of the "single particle" density of states (SPDOS) spectrum of a system. The SPDOS is proportional to the probability of successfully injecting or ejecting an electron in these experiments. It is equal to the number of electronic states in the system able to accept an injected electron as a function of its energy and is among the most fundamental and directly calculable quantities in theories of highly interacting systems. However, the two-dimensional electron system (2DES), host to remarkable correlated electron states such as the fractional quantum Hall effect, has proven difficult to probe spectroscopically. Here we present an improved version of time domain capacitance spectroscopy (TDCS) that now allows us to measure the SPDOS of a 2DES with unprecedented fidelity and resolution. Using TDCS, we perform measurements of a cold 2DES, providing the first direct measurements of the single-particle exchange-enhanced spin gap and single particle lifetimes in the quantum Hall system, as well as the first observations of exchange splitting of Landau levels not at the Fermi surface. The measurements reveal the difficult to reach and beautiful structure present in this highly correlated system far from the Fermi surface.Comment: There are formatting and minor textual differences between this version and the published version in Nature (follow the DOI link below

    The "Solar Model Problem" Solved by the Abundance of Neon in Stars of the Local Cosmos

    Full text link
    The interior structure of the Sun can be studied with great accuracy using observations of its oscillations, similar to seismology of the Earth. Precise agreement between helioseismological measurements and predictions of theoretical solar models has been a triumph of modern astrophysics (Bahcall et al. 2005). However, a recent downward revision by 25-35% of the solar abundances of light elements such as C, N, O and Ne (Asplund et al. 2004) has broken this accordance: models adopting the new abundances incorrectly predict the depth of the convection zone, the depth profiles of sound speed and density, and the helium abundance (Basu Antia 2004, Bahcall et al. 2005). The discrepancies are far beyond the uncertainties in either the data or the model predictions (Bahcall et al. 2005b). Here we report on neon abundances relative to oxygen measured in a sample of nearby solar-like stars from their X-ray spectra. They are all very similar and substantially larger than the recently revised solar value. The neon abundance in the Sun is quite poorly determined. If the Ne/O abundance in these stars is adopted for the Sun the models are brought back into agreement with helioseismology measurements (Antia Basu 2005, Bahcall et al. 2005c).Comment: 13 pages, 3 Figure

    A dynastic elite in monumental Neolithic society

    Get PDF
    The nature and distribution of political power in Europe during the Neolithic era remains poorly understood. During this period, many societies began to invest heavily in building monuments, which suggests an increase in social organization. The scale and sophistication of megalithic architecture along the Atlantic seaboard, culminating in the great passage tomb complexes, is particularly impressive. Although co-operative ideology has often been emphasised as a driver of megalith construction, the human expenditure required to erect the largest monuments has led some researchers to emphasize hierarchy—of which the most extreme case is a small elite marshalling the labour of the masses. Here we present evidence that a social stratum of this type was established during the Neolithic period in Ireland. We sampled 44 whole genomes, among which we identify the adult son of a first-degree incestuous union from remains that were discovered within the most elaborate recess of the Newgrange passage tomb. Socially sanctioned matings of this nature are very rare, and are documented almost exclusively among politico-religious elites—specifically within polygynous and patrilineal royal families that are headed by god-kings. We identify relatives of this individual within two other major complexes of passage tombs 150 km to the west of Newgrange, as well as dietary differences and fine-scale haplotypic structure (which is unprecedented in resolution for a prehistoric population) between passage tomb samples and the larger dataset, which together imply hierarchy. This elite emerged against a backdrop of rapid maritime colonization that displaced a unique Mesolithic isolate population, although we also detected rare Irish hunter-gatherer introgression within the Neolithic population
    • …
    corecore