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Abstract. Age-structured processes are well-established in population biology,
where birth and death rates often depend on the age of the underlying populations.
Recently, however, different examples of age-structured processes have been
considered in the context of cell motility or certain types of stochastically gated
ion channels, where the state of the system is determined by a switching process
with age-dependent transition rates. In this paper we consider the particular
problem of diffusion on a finite interval, with randomly switching boundary
conditions due to the presence of an age-structured stochastic gate at one end of
the interval. When the gate is closed the particles are reflected, whereas when it
is open the domain is in contact with a particle bath. We use a moments method
to derive a partial differential equation for the expectations of the stochastic
concentration, conditioned on the state of the gate. We then use transform
methods to eliminate the residence time of the age-structured switching, resulting
in non-Markovian equations for the expectations, and determine the effective
steady-state concentration gradient. Our analytical results are shown to match
those obtained using Monte Carlo simulations.
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1. Introduction

This paper is a continuation of a sequence of recent mathematical studies of diffusion
processes in randomly switching environments [18, 3, 4, 5, 20]. The environment is
taken to be a bounded domain with either randomly switching exterior boundary
conditions or stochastically-gated internal barriers such as gap junctions. The
stochastic switching is modeled by a Markov chain whose transition rates are
independent of the population density. The fact that the diffusing particles are all
subject to the same fluctuating environment means that statistical correlations arise at
the population level. That is, solving the diffusion equation for a particular realization
of the stochastically switching boundary conditions yields a population density that
depends on the particular realization. Hence, the density is a random field whose
moments evolve according to a hierarchy of deterministic PDEs [3, 20]. This new type
of model has applications to a variety of problem domains in biology and biophysics,
including diffusion-limited reactions [6], insect physiology [8], stochastically-gated
signaling between cells [7, 9], and volume neurotransmission [19, 21].

Probably the simplest example of the above type of process is the one-dimensional
diffusion equation on a bounded interval [18, 3]. Suppose that the left-hand
end satisfies a Dirichlet boundary condition, whereas the right-hand end switches
between inhomogeneous Dirichlet and Neumann boundary conditions. The switching
is represented by a two-state Markov chain. One finds that the solution of the
stochastic diffusion equation converges in distribution to a random concentration
whose expectation satisfies a deterministic system of partial differential equations
(PDEs). The solution of the latter is a linear function of x, with the underlying
stochastic process reflected by the non-trivial dependence of the concentration gradient
on model parameters.

In this paper we extend the one-dimensional problem to the case of age-structured
switching. Age-structured processes are well known in population biology, where
birth and death rates often depend on the age of the underlying population element
[10, 15], which could be a cell undergoing differentiation or proliferation [26, 24, 23],
or a whole organism undergoing reproduction [17]. Recently, however, a different
example of an age-structured process has been considered within the context of cell
motility [11, 12, 13]. The latter authors develop a stochastic two-state velocity jump
model of cell motility, in which the switching rate depends upon the residence or
running time the cell has spent moving in one direction. (This time is reset to
zero each time a reversal of direction occurs.) If the switching rate is taken to be
a decreasing function of the residence time, then one obtains a power law for the
velocity switching time distribution. In particular, the cell undergoes a persistent
random walk, whereby the longer the cell moves in a particular direction, the smaller
the switching probability for reversing direction becomes. The resulting cell motility
on mesoscopic time scales exhibits non-Markovian superdiffusive behavior consistent
with some recent experimental studies [1, 16].

We adapt the analysis of Fedotov et al [11, 12, 13] in order to consider an age-
structured switching process that controls the opening and closing of a stochastic
gate at the right-hand end of a bounded interval containing a population of diffusing
particles. When the gate is closed the particles are reflected, whereas when it is open
the domain is in contact with a particle bath. After formulating the model in section
2, we extend the moments method of Ref. [3] to derive PDEs for the expectation of the
stochastic concentration, conditioned on the age-structured state of the gate (section
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Figure 1: Outline of the steps in the calculation process for finding steady-state
solutions to the first moment of equation (2.1).

3). We then use transform methods to eliminate the residence time, resulting in non-
Markovian equations for the expectations, which are solved using Fourier/Laplace
transforms and the method of characteristics (section 4). Finally, in section 5 we
determine the effective steady-state concentration gradient. The logical flow of the
calculations is outlined in Figure 1.

2. Piecewise deterministic diffusion equation with age-structured
switching

Consider the following diffusion equation for the density u(x, t) of particles moving in
a one-dimensional bounded domain with position x ∈ [0, L] and time t > 0:

∂u

∂t
= D

∂2u

∂x2
, x ∈ [0, L], t > 0 (2.1)

supplemented by the boundary conditions

u(0, t) = 0, u(L, t) = η0 > 0 for n(t) = 0, (2.2a)

u(0, t) = 0 χ∂xu(L, t) + (1− χ)[u(L, t)− η1] = 0 for n(t) = 1,(2.2b)

with χ = 0, 1. Here n(t) ∈ {0, 1} denotes the current state of a stochastic gate at the
end x = L. If n(t) = 0 then the gate is open and the domain is in contact with a
particle bath of fixed concentration η0, whereas if n(t) = 1 then the gate is closed and
particles are either partially exposed to the bath (χ = 0, η1 < η0) or reflected (χ = 1).
In previous work [18, 3], we assumed that the state n(t) of the gate evolves according

to a two-state Markov chain: 0
α0



α1

1. Let Pn(t) =
∑
m=0,1 P[n(t) = n|n(0) = m]p0

m

be the probability distribution for the current state of the gate given that the initial
state n(0) is distributed according to p0. We then have the master equation

dPn(t)

∂t
=
∑
m=0,1

AnmPm(t) (2.3)
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where A is the matrix generator

A =

[
−α0 α1

α0 −α1

]
. (2.4)

The left nullspace of the matrix A is spanned by the vector ψ = (1, 1)> and the right
nullspace is spanned by

ρ ≡
(
ρ0

ρ1

)
=

1

α1 + α0

(
α1

α0

)
. (2.5)

A simple application of the Perron-Frobenius theorem shows that the two state Markov
process is ergodic with limt→∞ Pn(t) = ρn. One can view a solution of equation (2.1)
up to some time t as determining the probability density u(x, t) conditioned on a single
realization {n(s), 0 ≤ s < t} of the stochastic gate. Thus the conditional probability
density u(x, t) can be interpreted as determining the density of multiple particles
moving in the same random environment. Each realization of the gate will typically
generate a different solution u(x, t) so that u(x, t) is a random field variable. Taking
expectations with respect to these different realizations, conditioned on the current
state of the gate, we define the first moments

Vn(x, t) = E[u(x, t)1n(t)=n], n = 0, 1, (2.6)

where 1n(t)=n denotes the indicator function on the event n(t) = n. It can be shown
using the method outlined in section 3 that Vn evolves according to the equations
[18, 3]

∂V0

∂t
= D

∂2V0

∂x2
− α0V0 + α1V1, (2.7a)

∂V1

∂t
= D

∂2V1

∂x2
+ α0V0 − α1V1, (2.7b)

with

V0(0, t) = V1(0, t) = 0, V0(L, t) = ρ0η0, χ∂xV1(L, t) + (1− χ)[V1(L, t)− ρ1η1] = 0.

(2.8)

If χ = 0 then the resulting steady-state solution for V = V0 + V1 is [18, 4]

V (x) =
x

L
[ρ0η0 + ρ1η1], (2.9)

whereas for χ = 1

V (x) =
x

L

η0

1 + (ρ1/ρ0)(ξL)−1 tanh(ξL)
, ξ =

√
α0 + α1. (2.10)

In the latter case, although one has the expected linear gradient in concentration, the
dependence of the slope on model parameters is non-trivial. However, one recovers
the classical result in the fast switching limit ξ →∞:

V (x) =
x

L
η0,

In this paper, we replace the simple two-state Markov chain by an age-structured
model. That is, we introduce an additional time variable τ , which is the residence time
between successive switches in the state of the gate, such that τ is reset to zero each
time there is a state transition. We further assume that the switching rates depend on
τ by setting α1 = α1(τ), α0 = α0(τ). Let Λn(t, τ) denote the probability density that
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n(t) = n and the last transition was at time t − τ . We then have the age-structured
master equation

∂Λ0(t, τ)

∂t
+
∂Λ0(t, τ)

∂τ
= −α0(τ)Λ0(t, τ), (2.11a)

∂Λ1(t, τ)

∂t
+
∂Λ1(t, τ)

∂τ
= −α1(τ)Λ1(t, τ). (2.11b)

This pair of equations is supplemented by the boundary conditions

Λ0(t, 0) =

∫ t+

0

α1(τ)Λ1(t, τ)dτ, Λ1(t, 0) =

∫ t+

0

α0(τ)Λ0(t, τ)dτ, (2.11c)

and the initial conditions Λn(0, τ) = ρn(τ)δ(τ) with ρn(τ) given by equation (2.5) for
τ -dependent αn(τ). Here t+ mean the limit as ε → 0 of t + ε, so that we capture
the behavior of any singularities at τ = t+ resulting from the initial conditions. The
marginal distribution λn(t) is then obtained by integrating with respect to τ :

λn(t) =

∫ t+

0

Λn(t, τ)dτ. (2.12)

One possible choice for age-dependent transition rates is (see Refs. [11, 12, 13])

α1(τ) = φ
2µ

τ0 + τ
, α0(τ) = (1− φ)

2µ

τ0 + τ
,

for 0 < φ < 1. Note that equations (2.11a)–(2.11c) are similar to the classical
McKendrik-von Foerster equations in age-structured population dynamics [22, 25].

One question that quickly arises is what form the age-dependent rates α1(τ)
and α0(τ) should take (we will focus on αn(τ) ≡ α(τ) for now). Define the random
variable T to be the time until the next transition from n = 1 to n = 0 occurs.
To investigate the relationship between T and α(τ), we note that by definition of
conditional probability, T , and α(τ), we have that

P(T > τ + ∆τ |T > τ) =
P(T > τ + ∆τ)

P(T > τ)
= 1− α(τ)∆τ + o(∆τ).

Upon rearranging this equation, we have that

P(T > τ + ∆τ)− P(T > τ)

∆τ
= −α(τ)P(T > τ) + o(1).

Taking ∆τ → 0 then yields that the survival probability Ps(τ) := P(T > τ) satisfies
the ordinary differential equation (ODE)

dPs
dτ

= −α(τ)Ps.

Hence,

Ps(τ) = N exp
(
−
∫ τ

α(s)ds
)
,

where N is such that the probability density function (pdf) of T ,

p(τ) = −P ′s(τ) = Nα(τ) exp
(
−
∫ τ

α(s)ds
)
.

integrates to one,
∫∞

0
p(τ) dτ = 1.
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It follows that, given a survival probability distribution Ps(τ), we can construct
the appropriate switching rate by

α(τ) = −P
′
s(τ)

Ps(τ)
. (2.13)

As an informal example, consider the general class of transition rates given by
α(τ) = µ(1 + τ)k. The resulting survival distribution is

Ps(τ) = N exp
( −µ
k + 1

(1 + τ)k+1
)

if k 6= −1, (2.14)

Ps(τ) = N 1

(1 + τ)µ
if k = −1. (2.15)

Note that if k < −1, we do not have a finite mean. Since in that case on average
it takes an infinite amount of time for the system to change states, we will generally
assume that our survival distribution has a finite mean.

3. First moment equations

We now extend our previous work on diffusion in switching environments to derive
moment equations for the piecewise deterministic diffusion equation [3]. The first step
is to spatially discretize the equation (2.1) using a finite-difference scheme. Introduce
the lattice spacing a such that (N + 1)a = L for integer N , and let uj = u(aj) for
j = 0, . . . , N + 1. We then obtain the piecewise deterministic ODE

dui
dt

=

N∑
j=1

∆n
ijuj + η̂nδi,N , i = 1, . . . , N, n = 0, 1, (3.1)

with

η̂n =
η0D

a2
δn,0 +

η1D

a2
δn,1.

Away from the boundaries (i 6= 1, N), ∆n
ij is given by the discrete Laplacian

∆n
ij =

D

a2
[δi,j+1 + δi,j−1 − 2δi,j ]. (3.2a)

On the left-hand absorbing boundary we have u0 = 0, whereas on the right-hand
boundary we have

uN+1 = η0 for n = 0, χ(uN+1 − uN−1) + (1− χ)[uN+1 = η1] = 0 for n = 1.

These can be implemented by taking

∆n
1j =

D

a2
[δj,2 − 2δj,1], (3.2b)

∆0
Nj =

D

a2
[δN−1,j − 2δN,j ], (3.2c)

∆1
Nj = χ

2D

a2
[δN−1,j − δN,j ] + (1− χ)

D

a2
[δN−1,j − 2δN,j ]. (3.2d)

Let u(t) = (u1(t), . . . , uN (t)) and let τ(t) ≥ 0 be the time since the last switch

τ(t) := sup{s < t : n(t) = n(t− s′) for all s′ < s}.
Introduce the probability density

P
{
u(t) ∈ (u,u + du), n(t) = n, τ(t) ∈ (τ, τ + dτ)

}
= Pn(u, t, τ)dudτ, (3.3)
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where we have dropped the explicit dependence on initial conditions. The probability
density evolves according to the following differential Chapman-Kolmogorov (CK)
equation for the stochastic hybrid system (3.1):

∂Pn
∂t

+
∂Pn
∂τ

= −
N∑
i=1

∂

∂ui

 N∑
j=1

∆n
ijuj + η̂nδi,N

Pn(u, t, τ)


− αn(τ)Pn(u, t, τ). (3.4)

Equation (3.4) is supplemented by the boundary conditions

P0(u, t, 0) =

∫ t+

0

α1(τ)P1(u, t, τ)dτ, P1(u, t, 0) =

∫ t+

0

α0(τ)P0(u, t, τ)dτ. (3.5)

and the initial condition Pn(u, 0, τ) = ρn(0)δ(τ)f(u) with
∫
f(u)du = 1. Integrating

equation (3.4) with respect to u and setting

Λn(t, τ) =

∫
Pn(u, t, τ)du,

we recover (2.11a)-(2.11c).
Since the drift terms in the CK equation (3.4) are linear in the uj , it follows

that we can obtain a closed set of equations for the moments of Pn. Introduce the
first-order moments

Vn,k(t, τ) =

∫
Pn(u, t, τ)uk(t)dudτ. (3.6)

Multiplying both sides of the CK equation (3.4) by uk(t) and integrating with respect
to u gives (after integrating by parts and using that Pn(u, t, τ)→ 0 as u→∞ by the
maximum principle)

∂Vn,k
∂t

+
∂Vn,k
∂τ

=

N∑
j=1

∆n
kjVn,j + η̂nΛn(t, τ)δk,N − αn(τ)Vn,k(t, τ). (3.7)

If we now retake the continuum limit a → 0, we obtain the moment equations for
Vn(x, t, τ), namely,

∂Vn(x, t, τ)

∂t
+
∂Vn(x, t, τ)

∂τ
= D

∂2Vn(x, t, τ)

∂x2
− αn(τ)Vn(x, t, τ). (3.8)

This is supplemented by the boundary conditions

Vn(0, t, τ) = 0, V0(L, t, τ) = η0Λ0(t, τ), (3.9a)

χ∂xV1(L, t, τ) + (1− χ)[V1(L, t, τ)− η1Λ1(t, τ)] = 0, (3.9b)

with Λn evolving according to equations (2.11a) and (2.11b),

V0(x, t, 0) =

∫ t+

0

α1(τ)V1(x, t, τ)dτ, V1(x, t, 0) =

∫ t+

0

α0(τ)V0(x, t, τ)dτ, (3.9c)

and with the initial conditions

Vn(x, 0, τ) = V (0)
n (x)δ(τ) (3.9d)

for some initial spatial distribution V
(0)
n (x).



Diffusion in an age-structured randomly switching environment 8

4. Eliminating the residence time

In the previous section we derived equations for the τ -dependent first moments
Vn(x, t, τ). The next step is to derive a non-Markovian master equation for the τ -
independent moments

Mn(x, t) ≡
∫ t+

0

Vn(x, t, τ)dτ, (4.1a)

where we have integrated out the residence time τ . Note that we will need to be
careful about the singularity at τ = t+ coming from the factor of δ(τ) in the initial
conditions. At this point it is convenient to define several additional variables. First,
recall that the probability the gate is in state n at time t is given by

λn(t) ≡
∫ t+

0

Λn(t, τ)dτ, (4.1b)

analogous to the definition of Mn(x, t). Now define

Nn(x, t) ≡
∫ t+

0

αn(τ)Vn(x, t, τ)dτ, (4.1c)

rn(t) ≡
∫ t+

0

αn(τ)Λn(t, τ)dτ. (4.1d)

These new variables are integral terms describing the transfer of probability between
M0(x, t), M1(x, t) and λ0(t), λ1(t) respectively. We will proceed along analogous lines
to Fedotov et al [12]. Given the boundary conditions (2.11c) (3.9b), and (3.9c) we also
have to be able to solve for Nn(x, t), as well as the variables λn(t) and rn(t) through a
similar process, since the marginal distribution Λn(t, τ), the τ -dependent probability
density that the system is currently in state n at time t, is not known.

We can find the general form of the differential equation for Mn(x, t) in a fairly
straightforward manner. Integrating (3.8) from τ = 0 to τ = t+, interchanging
differentiation with integration, and using the fundamental theorem of calculus yields

∂Mn(x, t)

∂t
+ Vn(x, t, t+)− Vn(x, t, 0) = D

∂2Mn(x, t)

∂x2
−
∫ t+

0

αn(τ)Vn(x, t, τ)dτ.

Using the boundary condition Vn(x, t, 0) =
∫ t+

0
α1−n(τ)V1−n(x, t, τ)dτ = N1−n(x, t),

and the fact that Vn(x, t, σ) = 0 if σ > t, we obtain

∂Mn(x, t)

∂t
= D

∂2Mn(x, t)

∂x2
−Nn(x, t) +N1−n(x, t), (4.5a)

with boundary conditions

Mn(0, t) = 0, M0(L, t) = η0λ0(t), (4.5b)

χ∂xM1(L, t) + (1− χ)[M1(L, t)− η1λ1(t)] = 0. (4.5c)

In section 4.2 below, we use transform methods to rederive (4.5a) and write Nn in
terms of Mn.

We note that the initial condition Vn(x, 0, τ) = V
(0)
n (x)δ(τ) could be replaced

by a smooth distribution of initial residence times qn(τ), with
∫∞

0
qn(τ)dτ = 1. In

this case, we integrate τ over [0,∞) in order to eliminate the residence time. This
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simplifies the derivation of equation (4.5a), since there is no longer a singularity at
τ = t, so that ∫ ∞

0

∂Vn(x, t, τ)

∂τ
dτ = −N1−n(x, t).

For concreteness, we will use the point distribution δ(τ) throughout the rest of the
paper.

As in our previous studies, we are ultimately interested in the steady-state solution
M(x) = limt→∞[M0(x, t) +M1(x, t)], under the assumption that the following limits
exist:

λ∗n = lim
t→∞

λn(t). (4.6)

Adding the steady-state equations for M0(x) and M1(x) together yields

D
d2M(x)

dx2
= 0, (4.7)

which indicates that M(x) is a straight line through the origin, M(x) = Ax, with A
to be determined from the boundary conditions at x = L. In the Dirichlet-Dirichlet
case (χ = 0), one simply has

lim
t→∞

M(x, t) =
x

L
lim
t→∞

[η0λ0(t) + η1λ1(t)] . (4.8)

Thus, it is only necessary to calculate λn(t). The difficulty lies in the Dirichlet-
Neumann case, where M1(L, t) is not known explicitly. This means that one has to
solve equations (4.5a) directly, and thus deal with the fact that the integral terms
Nn are currently expressed in terms of Vn, rather that Mn. In order to rewrite Nn in
terms of Mn, and to solve the resulting equation for Mn, we will make use of transform
techniques. First, however, we show how to calculate λn(t).

4.1. Calculation of λn(t)

The first step is to decompose the right-hand sides of equations (4.1b) and (4.1d) into
two parts, one of which contains the singularity at τ = t+:

λn(t) =

∫ t−

0

Λn(t, τ)dτ +

∫ t+

t−
Λn(t, τ)dτ (4.9)

rn(t) =

∫ t−

0

αn(τ)Λn(t, τ)dτ +

∫ t+

t−
αn(τ)Λn(t, τ)dτ. (4.10)

Note that λn(t) is simply the probability that the system is in state n at time t. Using
the method of characteristics (see Fig. 2) we can write

Λn(t, τ) = Λn(t− τ, 0)e−
∫ τ
0
αn(t′)dt′ if t > τ (4.11a)

Λn(t, τ) = Λn(0, τ − t)e−
∫ τ
τ−t αn(t′)dt′ if t ≤ τ. (4.11b)

Note that

Ψn(τ) ≡ e−
∫ τ
0
αn(t′)dt′ (4.12)

is the survival probability that the system has not switched after residing in state n
for time τ . We also define

ψn(τ) ≡ αn(τ)e−
∫ τ
0
αn(t′)dt′ = −dΨn(τ)

dτ
, (4.13)
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the pdf for the probability that the system has exited state n before reaching residence
time τ . We can then write

λn(t) =

∫ t−

0

Λn(t− τ, 0)Ψn(τ)dτ +

∫ t+

t−
Λn(0, τ − t) Ψn(τ)

Ψn(τ − t)
dτ

=

∫ t

0

Λn(t− τ, 0)Ψn(τ)dτ +

∫ t+

t−
ρn(0)δ(τ − t) Ψn(τ)

Ψn(τ − t)
dτ

= Λn(t, 0) ∗Ψn(t) + ρn(0)Ψn(t)

= (r1−n ∗Ψn)(t) + ρn(0)Ψn(t), (4.14)

where we have used equation (2.11c). Similarly,

rn(t) =

∫ t−

0

Λn(t− τ, 0)ψn(τ)dτ +

∫ t+

t−
αn(τ)Λn(t, τ)dτ

= (r1−n ∗ ψn)(t) + ρn(0)ψn(t). (4.15)

What is convenient about these forms is that we now have either linear terms or
convolutions, making the Laplace transform ideal to use. Denoting L{f(t)} = f̃(s),
after applying the Laplace transform to both rn(t) and λn(t), we arrive at the system
of equations

λ̃n(s) = r̃1−n(s)Ψ̃n(s) + ρn(0)Ψ̃n(s) (4.16a)

r̃n(s) = r̃1−n(s)ψ̃n(s) + ρn(0)ψ̃n(s). (4.16b)

Solving (4.16a) for r̃1−n(s) gives

r̃1−n(s) =
λ̃n(s)− ρn(0)Ψ̃n(s)

Ψ̃n(s)
.

This implies that

r̃n(s) =
ψ̃n(s)

Ψ̃n(s)

(
λ̃n(s)− ρn(0)Ψ̃n(s)

)
+ ρn(0)ψ̃n(s) =

ψ̃n(s)

Ψ̃n(s)
λ̃n(s),

τ

t

Λn(0,τ-t)

Λ
n
(t
’-
τ’
,0
)

(t’,τ’)

(t,τ)

characteristics

Figure 2: Characteristics used to determine Λn(t, τ) in terms of the initial data
Λn(t− τ, 0) for t > τ and Λn(0, τ − t) for τ > t.
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and therefore

λ̃n(s) =
ψ̃1−n(s)

Ψ̃1−n(s)
λ̃1−n(s)Ψ̃n(s) + ρn(0)Ψ̃n(s).

Rewriting this as

λ̃n(s)

Ψ̃n(s)
− ρn(0) =

ψ̃1−n(s)

Ψ̃1−n(s)
λ̃1−n(s),

we can subtract (ψ̃n(s)/Ψ̃n(s))λ̃n(s) from both sides, yielding

λ̃n(s)[1− ψ̃n(s)]

Ψ̃n(s)
− ρn(0) =

ψ̃1−n(s)

Ψ̃1−n(s)
λ̃1−n(s)− ψ̃n(s)

Ψ̃n(s)
λ̃n(s).

Using the fact that ψ̃n(s) = −sΨ̃n(s) + 1, we arrive at the equation

sλ̃n(s)− ρn(0) =
ψ̃1−n(s)

Ψ̃1−n(s)
λ̃1−n(s)− ψ̃n(s)

Ψ̃n(s)
λ̃n(s) = r̃n−1(s)− r̃n(s) (4.17)

Since L{λ̇n(t)} = sλ̃n(s)−λn(0) = sλ̃n(s)− ρn(0), we can convert back from the
Laplace domain to the time domain to obtain the integro-differential equation

dλn(t)

dt
= −rn(t) + r1−n(t), (4.18)

where we have rewritten the transition rates as

rn(t) =

∫ t+

0

Kn(t− τ)λn(τ)dτ (4.19)

with the integral kernel Kn(t) defined by

Kn(t) = L−1

{
ψ̃n(s)

Ψ̃n(s)

}
. (4.20)

In the Markovian case αn(τ) = αn constant, this formulation recovers the standard
master equation for the two-state Markov chain. To see this, note that L{Ψ(t)} =
L{e−αnt} = (s+ αn)−1, so the integral kernel is

Kn(t) = L−1

{
1− sΨ̃n(s)

Ψ̃n(s)

}
= L−1{αn} = αnδ(t).

This means the rate functions are given by

rn(t) =

∫ t+

0

αnδ(t− τ)λn(τ)dτ = αnλn(t),

and the resulting system of equations is

dλn(t)

dt
= −αnλn(t) + α1−nλ1−n(t), n = 0, 1. (4.21)

Our next intermediate step is to find the steady-state behavior of λn(t) as t→∞.
For now we will simply assume such a limit exists, i.e. the proportion of time spent
in each discrete state approaches a constant value. Since the right hand side of (4.18)
is non-autonomous, this is a non-trivial task. The main tool we use is the final value
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theorem of Laplace transforms. The idea is that, assuming limt→∞ f(t) exists, we can
use the identity ∫ ∞

0

e−st
df(t)

dt
dt = sF (s)− f(0) (4.22)

to equate lims→0+ sF (s)− f(0) with

lim
s→0+

∫ ∞
0

e−st
df(t)

dt
dt =

∫ ∞
0

df(t)

dt
dt = lim

t→∞
f(t)− f(0).

Therefore, we have

lim
s→0+

sF (s) = lim
t→∞

f(t). (4.23)

In Laplace space, we can write the transform of the differential equations given
by (4.18) as a systems+ ψ̃0(s)

Ψ̃0(s)

ψ̃1(s)

Ψ̃1(s)
ψ̃0(s)

Ψ̃0(s)
s+ ψ̃1(s)

Ψ̃1(s)

(λ̃0(s)

λ̃1(s)

)
=

(
ρ0(0)
ρ1(0)

)
, (4.24)

which we can use to solve for sλ̃n(s), obtaining(
sλ̃0(s)

sλ̃1(s)

)
=

1

s+
∑
n=0,1

ψ̃n(s)

Ψ̃n(s)

s+ ψ̃1(s)

Ψ̃1(s)

ψ̃1(s)

Ψ̃1(s)
ψ̃0(s)

Ψ̃0(s)
s+ ψ̃0(s)

Ψ̃0(s)

(ρ0(0)
ρ1(0)

)
.(4.25)

Taking the limit s→ 0+ yields the solution

lim
t→∞

(
λ0(t)
λ1(t)

)
= lim
s→0+

(
sλ̃0(s)

sλ̃1(s)

)
=

( aλ
aλ+bλ

aλ
aλ+bλ

bλ
aλ+bλ

bλ
aλ+bλ

)(
ρ0(0)
ρ1(0)

)
=

( aλ
aλ+bλ
bλ

aλ+bλ

)
, (4.26)

where we have used ρ0(0) + ρ1(0) = 1, and defined

aλ =
lims→0+ ψ̃1(s)

lims→0+ Ψ̃1(s)
=

∫∞
0
ψ1(t)dt∫∞

0
Ψ1(t)dt

=
1−Ψ1(∞)∫∞
0

Ψ1(t)dt
=

1∫∞
0

Ψ1(t)dt
, (4.27a)

bλ =
lims→0+ ψ̃0(s)

lims→0+ Ψ̃0(s)
=

∫∞
0
ψ0(t)dt∫∞

0
Ψ0(t)dt

=
1−Ψ0(∞)∫∞
0

Ψ0(t)dt
=

1∫∞
0

Ψ0(t)dt
, (4.27b)

assuming the limit of each integral exists on its own. The last equalities follow from
the fact that the survival probability approaches 0 as t → ∞, assuming we have a
reasonable holding time distribution. Enforcing that ψn(τ) has a finite mean is one
way of ensuring this. In the Markovian case, we arrive at aλ = α1, bλ = α0, which
results in steady-state boundary conditions αn/(α0 + α1) = ρn(0), identical to the
Markovian boundary conditions one would normally obtain.

4.2. Calculation of Nn(x, t).

We now wish to perform a similar calculation to determine the functions Nn(x, t)
appearing in the PDE (4.5a) for Mn(x, t). We will proceed by applying transform
methods and the method of characteristics to the moment equations (3.8). First, note
that we can take V0, V1 and V = V0 + V1 to be in the same Fourier space by taking
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them to be odd, periodic functions on the domain [−L,L]. These periodic functions
will be discontinuous at x = ±L. Introduce the sine series

Vn(x, t, τ) =

∞∑
l=1

V̂n,l(t, τ) sin(lπx/L), n = 0, 1, (4.28)

with

V̂n,l(t, τ) =
1

L

∫ L

−L
Vn(x, t, τ) sin(lπx/L)dx. (4.29)

Fourier transforming the moment equations (3.8) gives

∂V̂n,l
∂t

+
∂V̂n,l
∂τ

= −
[
Dk2

l + αn(τ)
]
V̂n,l +

2Dkl
L

(−1)l+1Vn(L, t, τ), (4.30)

where kl = lπ/L. We have used the fact that the sine transform of second derivatives
picks up a boundary term. We also have the initial conditions

V̂n,l(0, τ) = V̂
(0)
n,l δ(τ), (4.31a)

V̂0,l(t, 0) =

∫ t+

0

α1(τ)V1,l(t, τ)dτ = N1,l(t), (4.31b)

V̂1,l(t, 0) =

∫ t+

0

α0(τ)V0,l(t, τ)dτ = N0,l(t). (4.31c)

Here Mn,l(t) and Nn,l(t) denote the sine transforms of M(x, t) and N(x, t). For the
moment, leave the boundary conditions for Vn(L, t, τ) unspecified.

The method of characteristics can now be used to find a solution along analogous
lines to the analysis of Λn(t, τ), see also Fig. 2. For t > τ , we have

V̂n,l(t, τ) = V̂n,l(t− τ, 0)Ψn(τ)e−Dk
2
l τ +Bn,l(t, τ), (4.32)

where

Bn,l(t, τ) = Ψn(τ)e−Dk
2
l τ

2Dkl
L

(−1)l+1

∫ τ

0

eDk
2
l τ
′

Ψn(τ ′)
Vn(L, t− τ + τ ′, τ ′)dτ ′. (4.33)

Similarly, for t ≤ τ we have

V̂n,l(t, τ) = V̂n,l(0, τ − t)Ψn(τ)e−Dk
2
l t + Cn,l(t, τ), (4.34)

where

Cn,l(t, τ) = Ψn(τ)e−Dk
2
l t

2klD

L
(−1)l+1

∫ t

0

eDk
2
l t
′

Ψn(t′)
Vn(L, t′, τ − t+ t′)dt′. (4.35)

The functions Bn,l(t, τ) and Bn,l(t, τ) are specified in terms of the boundary conditions
for Vn(L, t, τ).

The next step is to decompose the right-hand sides of equations (4.1a) and (4.1c)
into two parts, one of which contains the singularity at τ = t+. After Fourier
transforming we have

Mn,l(t) =

∫ t−

0

V̂n,l(t, τ)dτ +

∫ t+

t−
V̂n,l(t, τ)dτ (4.36a)

Nn,l(t) =

∫ t−

0

αn(τ)V̂n,l(t, τ)dτ +

∫ t+

t−
αn(τ)V̂n,l(t, τ)dτ. (4.36b)
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Substituting the characteristic solution into this pair of equations and using equations
(4.31a)–(4.31c), yields

Mn,l(t) = (N1−n,l ∗ Φn,l)(t) + V̂
(0)
n,l Φn,l(t) +Rn,l(t), (4.37a)

and

Nn,l(t) = (N1−n,l ∗ φn,l)(t) + V̂
(0)
n,l φn,l(t) + Sn,l(t), (4.37b)

where

Rn,l(t) =

∫ t−

0

Bn,l(t, τ)dτ +

∫ t+

t−
Cn,l(t, τ)dτ, (4.38a)

Sn,l(t) =

∫ t−

0

αn(τ)Bn,l(t, τ)dτ +

∫ t+

t−
αn(τ)Cn,l(t, τ)dτ, (4.38b)

and we have set

Φn,l(t) = Ψn(t)e−Dk
2
l t, φn,l(t) = ψn(t)e−Dk

2
l t.

The terms R have a complicated form, but a simple interpretation. They describe the
propagation of the memory of the gate at the right boundary into the interior of the
domain along characteristics. Laplace transforming the above equations leads to the
following algebraic system:

M̃n,l(s) = Ñ1−n,l(s)Ψ̃n(s+Dk2
l ) + V̂

(0)
n,l Ψ̃n(s+Dk2

l ) + R̃n,l(s), (4.39a)

Ñn,l(s) = Ñ1−n,l(s)ψ̃n(s+Dk2
l ) + V̂

(0)
n,l ψ̃n(s+Dk2

l ) + S̃n,l(s), (4.39b)

Finally, solving (4.39a) for Ñ1−n,l(s) gives

Ñ1−n,l(s) =
M̃n,l(s)− V (0)

n,l Ψ̃n(s+Dk2
l )− R̃n,l(s)

Ψ̃n(s+Dk2
l )

.

Combining this with (4.39b), we have that

Ñn,l(s) =
ψ̃n(s+Dk2

l )

Ψ̃n(s+Dk2
l )

(
M̃n,l(s)− V (0)

n,l Ψ̃n(s+Dk2
l )−Rn,l(s)

)
+ V

(0)
n,l ψ̃n(s+Dk2

l )

+ S̃n,l(s)

=
ψ̃n(s+Dk2

l )

Ψ̃n(s+Dk2
l )

[
M̃n,l(s)− R̃n,l(s)

]
+ S̃n,l(s), (4.40)

Equation (4.40) thus determines the Fourier-Laplace transform of Nn(x, t) in terms of
the corresponding transform of Mn(x, t) and the boundary conditions at x = L.

It is also now possible to recover the PDE (4.5a). From equation (4.39a) we have

M̃n,l(s)− R̃n,l(s) =
ψ̃1−n(s+Dk2

l )

Ψ̃1−n(s+Dk2
l )

[
M̃1−n,l(s)− R̃1−n,l(s)

]
Ψ̃n(s+Dk2

l )

+ V
(0)
n,l Ψ̃n(s+Dk2

l ) + S̃1−n,l(s)Ψ̃n(s+Dk2
l ).

Rewriting this as

M̃n,l(s)− R̃n,l(s)
Ψ̃n(s+Dk2

l )
− V (0)

n,l − S̃1−n,l(s) =
ψ̃1−n(s+Dk2

l )

Ψ̃1−n(s+Dk2
l )

[
M̃1−n,l(s)− R̃1−n,l(s)

]
,
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we can subtract

(ψ̃n(s+Dk2
l )/Ψ̃n(s+Dk2

l ))[M̃n,l(s)− R̃n,l(s)]
from both sides, yielding

[M̃n,l(s)− R̃n,l(s)][1− ψ̃n(s+Dk2
l )]

Ψ̃n(s+Dk2
l )

= V
(0)
n,l + S̃1−n,l(s)

+
ψ̃1−n(s+Dk2

l )

Ψ̃1−n(s+Dk2
l )

[M̃1−n,l(s)− R̃1−n,l(s)]−
ψ̃n(s+Dk2

l )

Ψ̃n(s+Dk2
l )

[M̃n,l(s)− R̃n,l(s)].

Using the fact that ψ̃n(s) = −sΨ̃n(s) + 1, we arrive at the equation

s[M̃n,l(s)− R̃n,l(s)]− V̂ (0)
n,l − S̃1−n,l(s) = −Dk2

l [M̃n,l(s)− R̃n,l(s)]

+
ψ̃1−n(s+Dk2

l )

Ψ̃1−n(s+Dk2
l )

[M̃1−n,l(s)− R̃1−n,l(s)]−
ψ̃n(s+Dk2

l )

Ψ̃n(s+Dk2
l )

[M̃n,l(s)− R̃n,l(s)].

Combining this with equation (4.40), we find

sM̃n,l(s)− V̂ (0)
n,l = −Dk2

l M̃n,l(s) + Ñ1−n,l(s)− Ñn,l(s) (4.41)

+ [Dk2
l + s]R̃n,l(s) + S̃n,l(s).

It is worth noting at this point that if the switching at the gate is given by an
exponential distribution, which is memoryless, the dependence of the above equation
on the memory terms R̃n,l(s) and S̃n,l(s) disappears, as the term [Dk2

l + s]R̃n,l(s) +

S̃n,l(s) cancels with the R̃n,l(s) terms present in Ñ1−n,l(s) and Ñn,l(s). Finally,
inverting the Fourier-Laplace transform recovers equation (4.5a) with boundary
conditions

Mn(0, t) = 0, Mn(L, t) = Fn(t). (4.42)

The Fourier-Laplace transform of the function Fn(t) is given

2Dkl
L

(−1)l+1F̃n(s) = [Dk2
l + s]R̃n,l(s) + S̃n,l(s). (4.43)

In order to determine the functions R̃n,l(s) and S̃n,l(s), we need to impose the
explicit boundary conditions at x = L for Bn,l(t, τ) and Cn,l(t, τ). The details of
these calculations can be found in the appendix for both Dirchlet-Dirichlet (χ = 0)
and Dirchlet-Neumann (χ = 1) boundary conditions. In the former case, we recover
from equation (4.43) the expected result that Fn(t) = ηnλn(t), which is a useful self-
consistency check. The Dirchlet-Neumann case is more involved, since F0(t) = η0λ0(t)
but F1(t) is unknown. The basic steps of the calculation are as follows. First, we
express the steady-state version of Rn,l(t) in terms of F ∗n := limt→∞ Fn(t). Second,
we express M0,l and Nn,l, n = 0, 1 in terms of M1,l and F ∗n . It then follows that
equation (A.8) can be used to determine M1,l in terms of the coefficients F ∗n . Since
F ∗0 = η0λ

∗
0, there is only one unknown constant F ∗1 . In the case of identical transition

rates αn(τ) = α1−n(τ) = α(τ), it is fairly straightforward to find a relatively compact
form for the Fourier coefficients M1,l. In particular, after some algebra, we find that
(see appendix),

M1,l =
2

Lkl
(−1)l+1

[
1

Ψ̃(0)

Ψ̃(Dk2
l )

1 + ψ̃(Dk2
l )
F ∗0 +

(
1− 1

Ψ̃(0)

Ψ̃(Dk2
l )

1 + ψ̃(Dk2
l )

)
F ∗1

]
. (4.44)
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for Dirichlet-Neumann. Finally, the unknown constant F ∗1 = M1(L) can be found by
enforcing the Neumann boundary condition at x = L.

We are now in a position to determine the slope of the steady-state mean
concentration for the Dirichlet-Neumann case. In order to calculate the spatial
derivative of M1(x), it is convenient to be able to differentiate the Fourier series
term by term. To do this, we must first homogenize the steady-state solution so that
the values at x = L and x = −L are identical, then find the Fourier coefficients for
the homogenized solution. This can be accomplished by simply subtracting the linear
function xF ∗1 /L from M1(x). Using linearity of Fourier series, the Fourier coefficients
of Mh

1 (x) ≡M1(x)− xF ∗1 /L are given by

Mh
1,l =

2

Lkl
(−1)l+1

[
1

Ψ̃(0)

Ψ̃(Dk2
l )

1 + ψ̃(Dk2
l )
F ∗0 −

1

Ψ̃(0)

Ψ̃(Dk2
l )

1 + ψ̃(Dk2
l )
F ∗1

]
. (4.45)

Setting

al =
2

Lkl
(−1)l+1 1

Ψ̃(0)

Ψ̃(Dk2
l )

1 + ψ̃(Dk2
l )
, (4.46)

we can then write

M1(x)− x

L
F ∗1 = F ∗0

∞∑
l=1

al sin(klx)− F ∗1
∞∑
l=1

al sin(klx). (4.47)

Taking derivatives and enforcing the Neumann boundary condition at x = L gives the
following expression for the unknown boundary value

M1(L) = F ∗1 =
F ∗0
∑∞
l=1(−1)lalkl∑∞

l=1(−1)lalkl − 1/L
, kl =

πl

L
. (4.48)

Now λ∗0 = 1/2 since α0 = α1. Thus, setting

bl =
2Ψ̃(Dk2

l )

1 + ψ̃(Dk2
l )

=
2(1− ψ̃(Dk2

l ))

Dk2
l (1 + ψ̃(Dk2

l ))
, (4.49)

we have that the slope of the steady state first moment M(x) simplifies to

M ′(x) =
1

L
(F ∗0 + F ∗1 ) =

η0

2L

(
1 +

∑∞
l=1 bl∑∞

l=1 bl + Ψ̃(0)

)
,

where Ψ̃(0) is the mean time between switches.

5. Examples of rate functions

5.1. Markovian transition rates

The first example we will look at is the Markovian case αn(τ) = αn. This has already
been studied in [18, 3], and we will show our formulation yields the same results.

In the case of constant transition rate functions αn, it is a straightforward
calculation to show that

Ψ̃n(Dk2) =
1

Dk2
l + αn

,
ψ̃n(Dk2)

Ψ̃n(Dk2)
= αn, λn =

α1−n

α0 + α1
.
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Define ξ =
√
α0 + α1 and set D = 1. Substituting this into equation (A.8) yields

k2
lM1,l = α0

[
2

klL
(−1)l+1 [F ∗0 + F ∗1 ]−M1,l −R0,l

]
− k2

lR0,l +
2kl
L

(−1)l+1F ∗0

− α1 [M1,l −R1,l] + k2
lR1,l −

2kl
L

(−1)l+1F ∗1 +
2kl
L

(−1)l+1F ∗1 , (5.1)

where we have used

M0,l =
2

klL
(−1)l+1 [F ∗0 + F ∗1 ]−M1,l. (5.2)

After some algebra,

(k2
l + ξ2)M1,l =

2α0

klL
(−1)l+1 [F ∗0 + F ∗1 ]

− (α0 + k2
l )R0,l + (α1 + k2

l )R1,l +
2kl
L

(−1)l+1F ∗0 . (5.3)

Equation (A.10) implies

Rn,l =
1

(αn + k2
l )

2kl
L

(−1)l+1F ∗n . (5.4)

so that

(k2
l + ξ2)M1,l =

2α0

klL
(−1)l+1 [F ∗0 + F ∗1 ] +

2

Lkl
(−1)l+1F ∗1 . (5.5)

From here we can find M1,l in terms of linear and hyperbolic functions. Enforcing
∂xM1,l = 0 at x = L allows us to solve for the unknown value F ∗1 . This yields

F ∗1 = λ∗1λ
∗
0η0

1− (ξL)−1 tanh(ξL)

λ∗0 + λ∗1(ξL)−1 tanh(ξL)
, (5.6)

with λ∗0, λ
∗
1 defined according to equation (4.6).

Comparison with Monte Carlo simulations in Figure 3(a), we can see that the
numerical and analytical results match. For identical transition rates α1 = α0 = α,
we can also plot the slope of M(x) as a function of α. The resulting curve approaches
η/L as α grows, matching the result from taking a fast switching limit in (5.6), and
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Figure 3: (a) Analytical and Monte Carlo steady-state solutions in the case of constant
switching rates α0 = α1 = α with α = 2. (b) Steady-state slope as a function of the
constant switching rate α. We have set η = L = 1 for simplicity.
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drops exponentially to η/2L as α grows (see Figure 3(b)). This comes from the fact
that as the switching rate slows down, the original switching system spends longer
periods of time in the state n = 1, where u(x, t) = 0 is an exponentially attracting
steady-sate solution. The contributions to the first moment then mainly come from
the state n = 0 with a Dirichlet boundary condition u(L, t) = η, which is enforced
half the time on average with identical switching rates.

5.2. Non-Markovian transition rates

We will illustrate the non-Markovian case using a gamma distribution

ψ(τ) =
1

Γ(k)βk
τk−1e−

x
β (5.7)

for both transition rate probabilities. This distribution has the advantage that both
the mean, given by kβ, and the variance, given by kβ2, can both be easily controlled.
In this case, the Laplace transform of ψ(τ) is given by

ψ̃(s) =
1

(1 + βs)k
. (5.8)
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Figure 4: Comparison of the analytical and Monte Carlo steady-state solutions for
the gamma distribution with (a) t = 15 and (c) t = 1500. The corresponding error
differences are plotted as a function of x in (b) and (d), respectively. Parameters of
the gamma distribution are k = 2, β = 0.1, and we have set η = L = 1.
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Figure 5: Steady-state slope for the gamma distribution as a function of β for various
shape parameters: k = 0.005, k = 0.05, k = 0.5, and k = 5.

Using the relation ψ̃ = 1− sΨ̃(s), we can find the Laplace transform of Ψ(τ) as

Ψ̃(s) =
(1 + βs)k − 1

s(1 + βs)k
. (5.9)

For this distribution, the value Ψ̃(0) does not exist, but lims→0+ Ψ̃(s) does exist and
is equal to kβ, the first moment of the distribution ψ(τ). This is true in general for

distributions with a finite mean, and we will interpret Ψ̃(0) as lims→0+ Ψ̃(s) = 〈ψ〉 as
needed.

Comparing the analytical steady state M(x) to Monte Carlo simulations using
identical transition rates, we can see that they match to a high degree of accuracy,
although the rate of convergence can be slow, see Fig. 4. Similar to the Markovian
case, we can also see how the slope is predicted to change based on the the scale
parameter β for fixed values of the shape parameter k, see Fig. 5. Note that as
k →∞ the slope approaches

5.3. Sub-exponential Transition Rates with Finite First Moments

One advantage of our solution method is that it can predict what the first moment is
even if the transition probability pdf ψ(τ) does not have finite variance. In these cases,
it is not computationally feasible to calculate the mean steady-state using Monte Carlo
simulations. However, from the analytical viewpoint developed in previous sections,
as long as the mean time to transition to another state is finite, the calculations for
M(x) still hold and we can predict what the mean steady-state will be.
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To illustrate this, consider a Pareto distribution given by

ψ(τ) =

{
0, 0 ≤ τ < τ0

γτγ0 /τ
γ+1, τ ≥ τ0

(5.10)

with the shape parameter γ restricted to be in the interval (1, 2) so that the mean
of the distribution, given by γτ0/(γ − 1), is finite, but the variance is infinite. The
Laplace transforms for both ψ(τ) and Ψ(τ) do not have closed forms, but can be
expressed in terms of a generalized exponential integral

En(s) =

∫ ∞
1

e−sτ

τn
dτ (5.11)

or an incomplete gamma function

Γ(a, s) =

∫ ∞
s

τa−1e−τdτ. (5.12)

The results for the slope with various scale parameters τ0 are shown in Figure 6.
There are several interesting features here. the slope seems to reach a saturating
value, mimicking the behavior on the mean γτ0/(γ − 1) as γ approaches infinity. We
also see that the curves approach a fast switching limit as τ0 approaches 0 for for
fixed values of γ, but all the curves approach 0.5 as γ goes to 1. A value of γ close
to 1 can be interpreted as a slow switching limit, as the mean time for the system to
switch states will be large. M(x, t) will either be near identically 0 if n = 1, or be
close to ηx/L = x if n = 0 for long periods of time, nearly wiping out any transitional
behavior. Hence the average slope will approach 0.5 for our chosen parameter values
η = 1 and L = 1.
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Figure 7: (a) Steady-state and Monte Carlo solution for deterministic switching
occurring at time intervals τ0 = 0.1. (b) Steady-state slope as a function of switching
interval τ0.

5.4. Deterministic Transition Times

Our approach can also handle the case of deterministic switching times. In order for a
switch out of state n ∈ {0, 1} to occur at a fixed deterministic residence time τn > 0,
we take the rate functions to be delta functions, αn = δ(τ − τn). In this case we

have Ψn(τ) = H(τn − τ), ψ̃n(s) = e−sτn , and Ψ̃n(s) = (1 − e−sτn)/s. For simplicity,
let τ1 = τ0, so that λ∗1 = λ∗0 = 1/2. Substituting this into (4.45) gives, after some
simplification

Mh
1,l =

2

Lkl
(−1)l+1 1− e−Dk2l τ0

τ0Dk2
l (1 + e−Dk

2
l τ0)

[F ∗0 − F ∗1 ] (5.13)

While using this to find an analytical expression for M(x), we can compare the
theoretical solution to Monte Carlo simulations (see Figure 7(a)).

If we now take a fast switching limit τ0 → 0, note that

lim
τ0→0

M1,l =
1

2
Ml, (5.14)

so we have the solution

lim
τ0→0

M1(L) =
1

2
[F ∗0 + lim

τ0→0
M1(L)], (5.15)

so limτ0→0M1(L) = F ∗0 . The solution for the first moment is then

M(x) =
η

L
x. (5.16)

This says that in the fast switching limit, the deterministic switching results in the
system effectively being in an open state n = 1, which matches the known result that
at rapidly switching system is equivalent to a system always in an open state. We can
also see this from the plot of the slope as a a function of τ0 shown in Figure 7(b). As
τ0 → 0, the slope approaches η/L = 1.
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Figure 8: (a) Theoretical steady-state slope plotted against the mean switching time
〈ψ〉 for the four example distributions. For the gamma distribution and the Pareto
distribution, we fix k = 0.05 and γ = 1.1 respectively. η and L are again set to unity.
(b) Convergence of the gamma distribution curve to the deterministic curve in the
large k limit.

5.5. Comparison of different switching time distributions

Finally, we compare the four different types of switching, Markovian, deterministic,
gamma, and Pareto, by plotting the steady state slope, M ′(x), against the mean
switching time. As is illustrated in Figure 8(a), the deterministic and Markovian
cases produce the most similar results, while the Pareto case has a more rapid change
for small mean switching times. The most pronounced variation occurs for the gamma
distribution, which takes the form of a sharp sigmoidal-like function. Nevertheless, all
four distributions share the following features: a fast switching limit (F ∗0 +F ∗1 )/L = 1
as the mean switching time approaches 0, and a slow switching limit (F ∗0 +F ∗1 )/L = 0.5
as the mean time to transition to another state approaches infinity. Note that in the
limits k →∞ and γ →∞, the gamma and Pareto distributions respectively approach
the deterministic switching curve. This is illustrated in Fig. 8(b) for the gamma dis-
tribution. In addition, the sharper dependence on the mean switching time in the case
of the gamma distribution can be explained as follows. Since the mean and variance
of the gamma distribution are given by kβ and kβ2 respectively, if we fix the mean
and take k small, since β is inversely proportional to k, β must be large. The variance
is dependent on β2, so the variance increases as k−2 when k approaches 0, leading to
much greater variance in the waiting times for the gate to switch states. As the sup-
port for the gamma distribution is [0,∞), this leads to longer switching times being
more common. This phenomenon can be counteracted by taking the mean switching
time to be very small, leading to the sharper dependence seen in Fig. 8.

6. Discussion

In this paper we have investigated the one-dimensional diffusion equation with
randomly switching boundaries. In particular, we have extended the results of [3]
for the slope of the steady-state solution in the Neumann-Dirichlet case to situations
where there is an age-based memory to the switching rates, introduced through the
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residence time variable τ . Using the discretization approach from [3], we derive a
system of linear PDEs for the moment equations. However, the introduction of age
structure to the system brings with it several technicalities to deal with, namely a
delta singularity in the initial conditions, and non-trivial integral boundary conditions
at τ = 0. To reformulate the problem without the residence time variable τ , we
integrate out τ to obtain a system of integro-differential equations with integral terms
depending on the τ -dependent moments Vn. To re-express these terms as function
of the τ -independent moments Mn, we utilize transformation techniques. By sine-
Fourier transforming the linear PDEs for Vn and using the method of characteristics
on the resulting first-order system, we can rewrite Mn in terms of convolutions in
time. Using the Laplace transform, we can solve the resulting algebraic system for
the integral terms independent of Vn provided that the mean time to switch between
states is finite.

We carry through with the calculations in transform space to find and solve
transformed steady-state equations. Due to the switching between Neumann and
Dirichlet boundary conditions, there is an unknown boundary value M1(L) that must
be solved for by enforcing the no-flux boundary condition at x = L. The final results
from the analysis match numerical results from Monte Carlo simulations in all the
cases that we tested.

Due to the relationship between the transition rates αn and the survival
distribution Ψ(τ), age structured switching can be used to model phenomena where
the switching is observed to follow a non-exponential distribution, even if the source of
this age-structure is not explicitly known. One particularly relevant example concerns
the non-exponential residence time intervals observed in ion channel gating dynamics,
see [14] and references therein. Although a nonexponential distribution could be
approximately fitted by a sum of exponentials, often the number of required terms
can be large and may change with experimental conditions. This has motivated the
development of anomalous diffusion-like models of ion-channel gating.

Finally, another natural question is whether or not our analysis can be extended to
the case where the switching rates depend on some spatial structure or on the density
u. Specific cases have been investigated already [12, 13], but a general approach seems
at the very least to be extremely technical.

Appendix

Case χ = 0. As a self-consistency check, we show that equation (4.43) yields
Fn(t) = ηnλn(t) when χ = 0. The explicit boundary conditions for Vn are
Vn(L, t, τ) = ηnΛn(t, τ) with Λn(t, τ) having the characteristic solutions (4.11a) and
(4.11b). Substituting these solutions into equations (4.33) and (4.35), respectively,
gives

Bn,l(t, τ) = Ψn(τ)
2klDηn
L

(−1)l+1Λn(t− τ, 0)
1− e−Dk2l τ

Dk2
l

, t > τ (A.1)

and

Cn,l(t, τ) =
2klηnD

L
(−1)l+1ρn(0)Ψn(t)

(
1− e−Dk

2
l t
)
δ(τ − t), τ ∈ [t−, t+]. (A.2)

It follows that ∫ t−

0

Bn,l(t, τ)dτ =
2ηn
Lkl

(−1)l+1(r1−n ∗ [Ψn − Φn,l])(t),
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0

α(τ)Bn,l(t, τ)dτ =
2ηn
Lkl

(−1)l+1(r1−n ∗ [ψn − φn,l])(t),

∫ t+

t−
Cn,l(t, τ)dτ =

2ηn
Lkl

(−1)l+1ρn(0)Ψn(t)
(

1− e−Dk
2
l t
)
,∫ t+

t−
αn(τ)Cn,l(t, τ)dτ =

2ηn
Lkl

(−1)l+1ρn(0)ψn(t)
(

1− e−Dk
2
l t
)
.

We have used the fact that r1−n(t) = Λn(t, 0), which follows from (2.11c) and (4.1d)
The Laplace transforms of equations (4.39a) and (4.39b) thus yield

R̃n,l(s) =
2ηn
Lkl

(−1)l+1 [r̃1−n(s) + ρn(0)] [Ψ̃n(s)− Ψ̃n(s+Dk2
l )], (A.3)

and

S̃n,l(s) =
2ηn
Lkl

(−1)l+1 [r̃1−n(s) + ρn(0)] [ψ̃n(s)− ψ̃n(s+Dk2
l )]

= −sR̃n,l(s) +Dk2
l

2ηn
Lkl

(−1)l+1 [r̃1−n(s) + ρn(0)] Ψ̃n(s+Dk2
l ). (A.4)

Again we have used ψ̃n(s) = −sΨ̃n(s) + 1. Equations (4.16a), (A.3) and (A.4) imply
that

[Dk2
l + s]R̃n,l(s) + S̃n,l(s) =

2Dklηn
L

(−1)l+1 [r̃1−n(s) + ρn(0)] Ψ̃n(s)

=
2Dkl
L

(−1)l+1ηnλ̃n(s).

Case χ = 1. In this case we do not have an explicit formula for F1(t), since we have
to determine V1(L, t, τ) given that ∂xV1(L, t, τ) = 0. (The analysis for χ = 0 carries
over for n = 0, that is, F0(t) = η0λ0(t).) The steady-state version of equation (4.5a)
takes the form

0 = D
d2Mn(x)

∂x2
−Nn(x) +N1−n(x), (A.5)

with boundary conditions

Mn(0) = 0, M0(L) = η0λ
∗
0, M1(L) = F ∗1 , ∂xM1(L) = 0, (A.6)

assuming the following limits exist

Nn(x) = lim
t→∞

Nn(x, t), F ∗1 = lim
t→∞

F1(t).

Adding equations (A.5) for n = 0, 1, the straight line solution for M(x) = M0(x) +
M1(x) is given by

M(x) =
x

L
[η0λ

∗
0 + F ∗1 ] , (A.7)

In Fourier space, we have

0 = −Dk2
lM1,l +N0,l −N1,l +

2Dkl
L

(−1)l+1F ∗1 , (A.8)

and

Ml =M0,l +M1,l =
2

klL
(−1)l+1 [η0λ

∗
0 + F ∗1 ] . (A.9)
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Adapting the analysis of the χ = 0 case, we require

R̃n,l(s) =
2

Lkl
(−1)l+1[F̃n(s) + ∆1,l(s)δn,1]

[
1− Ψ̃n(s+Dk2

l )

Ψ̃n(s)

]
with F0(t) = η0λ0(t) and lims→0+ s∆1,l(s) = 0. The intuition here is that the method
of characteristics propagates information about the value of Vn at the boundary
directly, with information about ∂xVn being included indirectly through Vn. This
suggests that the form for R1,l should match the form for R0,l. It follows that

Rn,l =
2

Lkl
(−1)l+1 lim

s→0+
s[F̃n(s) + ∆1,l(s)δn,1]

[
1− Ψ̃n(s+Dk2

l )

Ψ̃n(s)

]
,

=
2

Lkl
(−1)l+1

[
1− Ψ̃n(Dk2

l )

Ψ̃n(0)

]
F ∗n , (A.10)

Similarly, from equation (4.43)

Dk2
lRn,l + Sn,l = lim

s→0+
s
[
[Dk2

l + s]R̃n,l(s) + S̃n,l(s)
]
,

=
2Dkl
L

(−1)l+1F ∗n , (A.11)

and

Nn,l = lim
s→0+

s

[
ψ̃n(s+Dk2

l )

Ψ̃n(s+Dk2
l )

[
M̃n,l(s)− R̃n,l(s)

]
+ S̃n,l(s)

]

=
ψ̃n(Dk2

l )

Ψ̃n(Dk2
l )

[Mn,l −Rn,l] + Sn,l (A.12)

=
ψ̃n(Dk2

l )

Ψ̃n(Dk2
l )

[Mn,l −Rn,l]−Dk2
lRn,l +

2Dkl
L

(−1)l+1F ∗n (A.13)

=
ψ̃n(Dk2

l )

Ψ̃n(Dk2
l )
Mn,l −

1

Ψ̃n(Dk2
l )
Rn,l +

2Dkl
L

(−1)l+1F ∗n , (A.14)

where the last equality follows from the relation

ψ̃n(Dk2
l )

Ψ̃n(Dk2
l )

+Dk2
l =

1

Ψ̃n(Dk2
l )
.

We now make a number of observations. First Rn,l can be expressed in terms of
F ∗n . Second, we can express M0,l, and Nn,l, n = 0, 1 in terms of M1,l and F ∗n . It
follows that equation (A.8) can be used to determineM1,l in terms of the coefficients
F ∗n . Since F ∗0 = η0λ

∗
0, there is only one unknown constant F ∗1 . The latter can be

determined by imposing the remaining boundary condition ∂xM1(L) = 0.
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