88 research outputs found

    Juvenile king scallop, Pecten maximus, is potentially tolerant to low levels of ocean acidification when food is unrestricted.

    Get PDF
    The decline in ocean water pH and changes in carbonate saturation states through anthropogenically mediated increases in atmospheric CO2 levels may pose a hazard to marine organisms. This may be particularly acute for those species reliant on calcareous structures like shells and exoskeletons. This is of particular concern in the case of valuable commercially exploited species such as the king scallop, Pecten maximus. In this study we investigated the effects on oxygen consumption, clearance rates and cellular turnover in juvenile P. maximus following 3 months laboratory exposure to four pCO2 treatments (290, 380, 750 and 1140 µatm). None of the exposure levels were found to have significant effect on the clearance rates, respiration rates, condition index or cellular turnover (RNA: DNA) of individuals. While it is clear that some life stages of marine bivalves appear susceptible to future levels of ocean acidification, particularly under food limiting conditions, the results from this study suggest that where food is in abundance, bivalves like juvenile P. maximus may display a tolerance to limited changes in seawater chemistry

    Anthropology, health and illness: an introduction to the concept of culture applied to the health sciences

    Get PDF
    This article presents a reflection as to how notions and behavior related to the processes of health and illness are an integral part of the culture of the social group in which they occur. It is argued that medical and health care systems are cultural systems consonant with the groups and social realities that produce them. Such a comprehension is fundamental for the health care professional training.Este artículo presenta una reflexión acerca de como las nociones y comportamientos asociados a los procesos de salud y enfermedad están integrados a la cultura de los grupos sociales en los que estos procesos ocurren. Se argumenta que los sistemas médicos de atención a la salud, así como las respuestas dadas a la enfermedad son sistemas culturales que están en consonancia con los grupos y las realidades sociales que los producen. Comprender esta relación es crucial para la formación de profesionales en el área de la salud.O objetivo deste artigo foi apresentar uma reflexão de como as noções e comportamentos ligados aos processos de saúde e de doença integram a cultura de grupos sociais onde os mesmos ocorrem. Argumenta-se que os sistemas médicos de atenção à saúde, assim como as respostas dadas às doenças, são sistemas culturais, consonantes com os grupos e realidades sociais que os produzem. A compreensão dessa relação se mostra fundamental para a formação do profissional da saúde

    The MR-base platform supports systematic causal inference across the human phenome

    Get PDF
    Figures and data are available online at: https://elifesciences.org/articles/34408/figures#content .Results from genome-wide association studies (GWAS) can be used to infer causal relationships between phenotypes, using a strategy known as 2-sample Mendelian randomization (2SMR) and bypassing the need for individual-level data. However, 2SMR methods are evolving rapidly and GWAS results are often insufficiently curated, undermining efficient implementation of the approach. We therefore developed MR-Base (http://www.mrbase.org): a platform that integrates a curated database of complete GWAS results (no restrictions according to statistical significance) with an application programming interface, web app and R packages that automate 2SMR. The software includes several sensitivity analyses for assessing the impact of horizontal pleiotropy and other violations of assumptions. The database currently comprises 11 billion single nucleotide polymorphism-trait associations from 1673 GWAS and is updated on a regular basis. Integrating data with software ensures more rigorous application of hypothesis-driven analyses and allows millions of potential causal relationships to be efficiently evaluated in phenome-wide association studies.Supported by Cancer Research UK grant C18281/A19169 (the Integrative Cancer Epidemiology Programme) and the Roy Castle Lung Cancer Foundation (2013/18/Relton). The Medical Research Council Integrative Epidemiology Unit is supported by grants MC_UU_12013/1, MC_UU_12013/2 and MC_UU_12013/8. PCH is supported by a Cancer Research UK Population Research Postdoctoral Fellowship (C52724/A20138). Jack Bowden is supported by a MRC Methodology Research Fellowship (grant MR/N501906/1). DME supported by the NHMRC APP1125200, APP1137714. GH is supported by Wellcome (208806/Z/17/Z)

    Global Regulation of Nucleotide Biosynthetic Genes by c-Myc

    Get PDF
    The c-Myc transcription factor is a master regulator and integrates cell proliferation, cell growth and metabolism through activating thousands of target genes. Our identification of direct c-Myc target genes by chromatin immunoprecipitation (ChIP) coupled with pair-end ditag sequencing analysis (ChIP-PET) revealed that nucleotide metabolic genes are enriched among c-Myc targets, but the role of Myc in regulating nucleotide metabolic genes has not been comprehensively delineated.Here, we report that the majority of genes in human purine and pyrimidine biosynthesis pathway were induced and directly bound by c-Myc in the P493-6 human Burkitt's lymphoma model cell line. The majority of these genes were also responsive to the ligand-activated Myc-estrogen receptor fusion protein, Myc-ER, in a Myc null rat fibroblast cell line, HO.15 MYC-ER. Furthermore, these targets are also responsive to Myc activation in transgenic mouse livers in vivo. To determine the functional significance of c-Myc regulation of nucleotide metabolism, we sought to determine the effect of loss of function of direct Myc targets inosine monophosphate dehydrogenases (IMPDH1 and IMPDH2) on c-Myc-induced cell growth and proliferation. In this regard, we used a specific IMPDH inhibitor mycophenolic acid (MPA) and found that MPA dramatically inhibits c-Myc-induced P493-6 cell proliferation through S-phase arrest and apoptosis.Taken together, these results demonstrate the direct induction of nucleotide metabolic genes by c-Myc in multiple systems. Our finding of an S-phase arrest in cells with diminished IMPDH activity suggests that nucleotide pool balance is essential for c-Myc's orchestration of DNA replication, such that uncoupling of these two processes create DNA replication stress and apoptosis
    corecore