3 research outputs found

    Rate after-effects fail to transfer cross-modally: evidence for distributed sensory timing mechanisms

    Get PDF
    Accurate time perception is critical for a number of human behaviours, such as understanding speech and the appreciation of music. However, it remains unresolved whether sensory time perception is mediated by a central timing component regulating all senses, or by a set of distributed mechanisms, each dedicated to a single sensory modality and operating in a largely independent manner. To address this issue, we conducted a range of unimodal and cross-modal rate adaptation experiments, in order to establish the degree of specificity of classical after- effects of sensory adaptation. Adapting to a fast rate of sensory stimulation typically makes a moderate rate appear slower (repulsive after-effect), and vice versa. A central timing hypothesis predicts general transfer of adaptation effects across modalities, whilst distributed mechanisms predict a high degree of sensory selectivity. Rate perception was quantified by a method of temporal reproduction across all combinations of visual, auditory and tactile senses. Robust repulsive after-effects were observed in all unimodal rate conditions, but were not observed for any cross-modal pairings. Our results show that sensory timing abilities are adaptable but, crucially, that this change is modality-specific - an outcome that is consistent with a distributed sensory timing hypothesis

    Motor and perceptual timing in Parkinson's Disease

    No full text
    Neuroimaging has been a powerful tool for understanding the neural architecture of interval timing. However, identifying the critical brain regions engaged in timing was initially driven by investigation of human patients and animals. This chapter draws on the important contribution that the study of patients with Parkinson’s disease (PD) has made in identifying the basal ganglia as a key component of motor and perceptual timing. The chapter initially describes the experimental tasks that have been critical in PD (and non-PD) timing research before systematically discussing the results from behavioural studies. This is followed by a critique of neuroimaging studies that have given insight into the pattern of neural activity during motor and perceptual timing in PD. Finally, discussion of the effects of medical and surgical treatment on timing in PD enables further evaluation of the role of dopamine in interval timing
    corecore