2,048 research outputs found

    Quantifying sources of methane using light alkanes in the Los Angeles basin, California

    Get PDF
    Methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), and C2-C5 alkanes were measured throughout the Los Angeles (L.A.) basin in May and June 2010. We use these data to show that the emission ratios of CH4/CO and CH4/CO2 in the L.A. basin are larger than expected from population-apportioned bottom-up state inventories, consistent with previously published work. We use experimentally determined CH4/CO and CH4/CO2 emission ratios in combination with annual State of California CO and CO2 inventories to derive a yearly emission rate of CH4 to the L.A. basin. We further use the airborne measurements to directly derive CH4 emission rates from dairy operations in Chino, and from the two largest landfills in the L.A. basin, and show these sources are accurately represented in the California Air Resources Board greenhouse gas inventory for CH4. We then use measurements of C2-C5 alkanes to quantify the relative contribution of other CH4 sources in the L.A. basin, with results differing from those of previous studies. The atmospheric data are consistent with the majority of CH4 emissions in the region coming from fugitive losses from natural gas in pipelines and urban distribution systems and/or geologic seeps, as well as landfills and dairies. The local oil and gas industry also provides a significant source of CH4 in the area. The addition of CH4 emissions from natural gas pipelines and urban distribution systems and/or geologic seeps and from the local oil and gas industry is sufficient to account for the differences between the top-down and bottom-up CH4 inventories identified in previously published work. Key PointsTop-down estimates of CH4 emissions in L.A. are greater than inventory estimatesEstimates of CH4 emissions from landfills in L.A. agree with CARB inventoryPipeline natural gas and/or seeps, and landfills are main sources of CH4 in L.A. ©2013. American Geophysical Union. All Rights Reserved

    Current-density functional theory of time-dependent linear response in quantal fluids: recent progress

    Full text link
    Vignale and Kohn have recently formulated a local density approximation to the time-dependent linear response of an inhomogeneous electron system in terms of a vector potential for exchange and correlation. The vector potential depends on the induced current density through spectral kernels to be evaluated on the homogeneous electron-gas. After a brief review of their theory, the case of inhomogeneous Bose superfluids is considered, with main focus on dynamic Kohn-Sham equations for the condensate in the linear response regime and on quantal generalized hydrodynamic equations in the weak inhomogeneity limit. We also present the results of calculations of the exchange-correlation spectra in both electron and superfluid boson systems.Comment: 12 pages, 2 figures, Postscript fil

    New ophthalmosaurid ichthyosaurs from the European lower cretaceous demonstrate extensive ichthyosaur survival across the Jurassic–Cretaceous boundary

    Get PDF
    Background Ichthyosauria is a diverse clade of marine amniotes that spanned most of the Mesozoic. Until recently, most authors interpreted the fossil record as showing that three major extinction events affected this group during its history: one during the latest Triassic, one at the Jurassic–Cretaceous boundary (JCB), and one (resulting in total extinction) at the Cenomanian-Turonian boundary. The JCB was believed to eradicate most of the peculiar morphotypes found in the Late Jurassic, in favor of apparently less specialized forms in the Cretaceous. However, the record of ichthyosaurs from the Berriasian–Barremian interval is extremely limited, and the effects of the end-Jurassic extinction event on ichthyosaurs remains poorly understood. Methodology/Principal Findings Based on new material from the Hauterivian of England and Germany and on abundant material from the Cambridge Greensand Formation, we name a new ophthalmosaurid, Acamptonectes densus gen. et sp. nov. This taxon shares numerous features with Ophthalmosaurus, a genus now restricted to the Callovian–Berriasian interval. Our phylogenetic analysis indicates that Ophthalmosauridae diverged early in its history into two markedly distinct clades, Ophthalmosaurinae and Platypterygiinae, both of which cross the JCB and persist to the late Albian at least. To evaluate the effect of the JCB extinction event on ichthyosaurs, we calculated cladogenesis, extinction, and survival rates for each stage of the Oxfordian–Barremian interval, under different scenarios. The extinction rate during the JCB never surpasses the background extinction rate for the Oxfordian–Barremian interval and the JCB records one of the highest survival rates of the interval. Conclusions/Significance There is currently no evidence that ichthyosaurs were affected by the JCB extinction event, in contrast to many other marine groups. Ophthalmosaurid ichthyosaurs remained diverse from their rapid radiation in the Middle Jurassic to their total extinction at the beginning of the Late Cretaceous

    Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars

    Get PDF
    Observations from in situ experiments and planetary orbiters have shown that the sedimentary rocks found at Meridiani Planum, Mars were formed in the presence of acidic surface waters. The water was thought to be brought to the surface by groundwater upwelling, and may represent the last vestiges of the widespread occurrence of liquid water on Mars. However, it is unclear why the surface waters were acidic. Here we use geochemical calculations, constrained by chemical and mineralogical data from the Mars Exploration Rover Opportunity, to show that Fe oxidation and the precipitation of oxidized iron (Fe^(3+)) minerals generate excess acid with respect to the amount of base anions available in the rocks present in outcrop. We suggest that subsurface waters of near-neutral pH and rich in Fe^(2+) were rapidly acidified as iron was oxidized on exposure to O_2 or photo-oxidized by ultraviolet radiation at the martian surface. Temporal variation in surface acidity would have been controlled by the availability of liquid water, and as such, low-pH fluids could be a natural consequence of the aridification of the martian surface. Finally, because iron oxidation at Meridiani would have generated large amounts of gaseous H_2, ultimately derived from the reduction of H_2O, we conclude that surface geochemical processes would have affected the redox state of the early martian atmosphere

    The influence of the team in conducting a systematic review

    Get PDF
    There is an increasing body of research documenting flaws in many published systematic reviews' methodological and reporting conduct. When good systematic review practice is questioned, attention is rarely turned to the composition of the team that conducted the systematic review. This commentary highlights a number of relevant articles indicating how the composition of the review team could jeopardise the integrity of the systematic review study and its conclusions. Key biases require closer attention such as sponsorship bias and researcher allegiance, but there may also be less obvious affiliations in teams conducting secondary evidence-syntheses. The importance of transparency and disclosure are now firmly on the agenda for clinical trials and primary research, but the meta-biases that systematic reviews may be at risk from now require further scrutiny
    corecore