6 research outputs found

    Impacts of Poultry House Environment on Poultry Litter Bacterial Community Composition

    Get PDF
    Viral and bacterial pathogens are a significant economic concern to the US broiler industry and the ecological epicenter for poultry pathogens is the mixture of bedding material, chicken excrement and feathers that comprises the litter of a poultry house. This study used high-throughput sequencing to assess the richness and diversity of poultry litter bacterial communities, and to look for connections between these communities and the environmental characteristics of a poultry house including its history of gangrenous dermatitis (GD). Cluster analysis of 16S rRNA gene sequences revealed differences in the distribution of bacterial phylotypes between Wet and Dry litter samples and between houses. Wet litter contained greater diversity with 90% of total bacterial abundance occurring within the top 214 OTU clusters. In contrast, only 50 clusters accounted for 90% of Dry litter bacterial abundance. The sixth largest OTU cluster across all samples classified as an Arcobacter sp., an emerging human pathogen, occurring in only the Wet litter samples of a house with a modern evaporative cooling system. Ironically, the primary pathogenic clostridial and staphylococcal species associated with GD were not found in any house; however, there were thirteen 16S rRNA gene phylotypes of mostly Gram-positive phyla that were unique to GD-affected houses and primarily occurred in Wet litter samples. Overall, the poultry house environment appeared to substantially impact the composition of litter bacterial communities and may play a key role in the emergence of food-borne pathogens

    Before the endless forms: embodied model of transition from single cells to aggregates to ecosystem engineering

    Get PDF
    The emergence of complex multicellular systems and their associated developmental programs is one of the major problems of evolutionary biology. The advantages of cooperation over individuality seem well known but it is not clear yet how such increase of complexity emerged from unicellular life forms. Current multicellular systems display a complex cell-cell communication machinery, often tied to large-scale controls of body size or tissue homeostasis. Some unicellular life forms are simpler and involve groups of cells cooperating in a tissue-like fashion, as it occurs with biofilms. However, before true gene regulatory interactions were widespread and allowed for controlled changes in cell phenotypes, simple cellular colonies displaying adhesion and interacting with their environments were in place. In this context, models often ignore the physical embedding of evolving cells, thus leaving aside a key component. The potential for evolving pre-developmental patterns is a relevant issue: how far a colony of evolving cells can go? Here we study these pre-conditions for morphogenesis by using CHIMERA, a physically embodied computational model of evolving virtual organisms in a pre-Mendelian world. Starting from a population of identical, independent cells moving in a fluid, the system undergoes a series of changes, from spatial segregation, increased adhesion and the development of generalism. Eventually, a major transition occurs where a change in the flow of nutrients is triggered by a sub-population. This ecosystem engineering phenomenon leads to a subsequent separation of the ecological network into two well defined compartments. The relevance of these results for evodevo and its potential ecological triggers is discussedThis work has been supported by grants of the James McDonnell Foundation (RVS, SV), Fundación Marcelino Botín (RVS, SV), FIS2004-05422 (RVS) and by the Santa Fe Institut

    Safety and toxicity evaluation of nutraceuticals in animal models.

    No full text
    Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables, and fruits. Most of them possess antioxidant or anti-inflammatory properties and are claimed to provide protection against many diseases if taken regularly. At the same time, toxicological studies of nutraceuticals have been limited, so the safety of many of them cannot be guaranteed. Animals share many genetic, anatomical, and physiological similarities with humans, and they continue to be widely used in preclinical studies of drugs, in spite of a lack of their validity which is due to the great phenotypic differences. The absence of toxicity in animals provides little probability that adverse reactions will also be absent in humans. There are currently thousands of researchers involved in the development of alternatives to animal use in the life sciences. Statistical machine-learning tools, once developed, might become a powerful means to explain the complex physiological effects of nutraceuticals. The use of different models and algorithms can provide a more scientific basis for risk assessment of nutraceuticals for humans
    corecore