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Abstract

The emergence of complex multicellular systems and their associated developmental programs is one of the major
problems of evolutionary biology. The advantages of cooperation over individuality seem well known but it is not clear yet
how such increase of complexity emerged from unicellular life forms. Current multicellular systems display a complex cell-
cell communication machinery, often tied to large-scale controls of body size or tissue homeostasis. Some unicellular life
forms are simpler and involve groups of cells cooperating in a tissue-like fashion, as it occurs with biofilms. However, before
true gene regulatory interactions were widespread and allowed for controlled changes in cell phenotypes, simple cellular
colonies displaying adhesion and interacting with their environments were in place. In this context, models often ignore the
physical embedding of evolving cells, thus leaving aside a key component. The potential for evolving pre-developmental
patterns is a relevant issue: how far a colony of evolving cells can go? Here we study these pre-conditions for
morphogenesis by using CHIMERA, a physically embodied computational model of evolving virtual organisms in a pre-
Mendelian world. Starting from a population of identical, independent cells moving in a fluid, the system undergoes a series
of changes, from spatial segregation, increased adhesion and the development of generalism. Eventually, a major transition
occurs where a change in the flow of nutrients is triggered by a sub-population. This ecosystem engineering phenomenon
leads to a subsequent separation of the ecological network into two well defined compartments. The relevance of these
results for evodevo and its potential ecological triggers is discussed.
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Introduction

A key problem in evolutionary biology is the emergence of

complex life forms under the cooperation of several interacting

cells [1,2]. Multicellularity emerged through evolution several

times (at least 25) and has been a prerequisite for the generation of

complex types of development [3–6]. This major transition

brought division of labour and opened the door for the emergence

of development and body plans [7–9]. But for many reasons, and

in spite of its obvious importance, the evolution of multicellularity

is not yet well understood. The fossil traces of the transition are still

incomplete, although rapidly improving. However, dedicated

efforts to unravel the phylogeny of multicellular living forms, the

analysis of special model organisms and the cues provided by the

presence of potential genetic toolkits predating the emergence of

complex metazoans are defining the potential minimal require-

ments for the transition towards complex multicellular life forms.

This transition is particularly relevant for the critical changes that

took place around 560 Myr ago, associated to the so called

Cambrian event [1,10] but its roots predate a much earlier time

window, as indicated by the analysis of ancestral genomes.

Moreover, the picture gets more complicated as we consider

additional components related to the physical environment and the

constraints and opportunities posed by ecological interactions.

Actually, the multiple facets of the debate on the origins of

multicellular organisms have to do with the role played by the

different potential shapers of the event. These multiple factors are

not independent, and are likely to have interacted in complex ways.

In general terms, the multicellular state is characterized by the

existence of cell-cell interactions of some sort that provide a source

for collective adaptation to energy limitations, physical fluctuations

and eventually division of labor. In multicellular organisms, lower-

level entities (cells) have relinquished their ability to reproduce as

independent units and instead replicate exclusively as part of the

larger whole. But long before a developmental body plan was even

defined, in what has been dubbed the ‘‘pre-Mendelian world’’

[11], several layers of complexity were required. This as a

particularly relevant problem deeply tied with the problem of

hierarchies in evolution [12–13].

Before developmental programs allowed true multicellular

organisms to emerge, single cells developed into monomorphic

aggregates and later on into differentiated aggregates [13].

Moreover, cell adhesion mechanisms required for the emergence

of multicellularity have a much early origin [14]. In this context,

long before complex metazoans appeared, some key components
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of the toolkit were already in place. How did these components

affected the transition to multicellularity is an open question, and

theoretical models can help to address it.

Most mathematical and computational models dealing with

early evolution of development assume that either genetic

networks or even body plans are already in place or instead deal

with pattern-forming colonies and their potential to form

structures under given spatial and nutrient constraints [15–17].

However, less attention has been given to the physics associated to

these processes, particularly in relation with early scenarios lacking

fine-tuned genetic regulation of development. By physics we refer

to two different levels. One includes diffusion, excitability,

oscillations or even cellular interaction forces, which can be

captured by cell sorting models based on energy minimization

functionals [11,18,19,20]. In this context, it is possible to evolve

morphologies and observe the interplay between cell differentia-

tion, growth and communication [21–23] with a properly defined

optimization algorithm. The other level deals with the embedding

of cells and organisms within a physical medium. Here, forces are

closer to standard physics, i.e., the way cells might displace in the

three-dimensional environment, how cells interact with the

substrate and how cells find nutrients in a fluctuating medium.

Previous work on physically-embedded artificial systems was

pioneered by a number of researchers, who evolved artificial

‘‘organisms’’ [24,25]. Related work has considered the interplay

between genetic networks and morphogenesis [26–30].

In this paper we would like to address, under a well defined

framework, some questions related to the pre-multicellular world

where cell aggregates (but not true organisms or body plans) could

develop, providing some key preconditions for multicellularity to

emerge. In particular, we would like to understand how the

physical context, cell-cell adhesion properties, ecological and

epigenetic factors concur to favor the emergence of cell aggregates.

Moreover, we would like to understand how the environment

influences (and can be influenced by) the evolution of cell diversity

and cell-cell interactions. These are, we believe, important pieces

in the extended evolutionary synthesis provided by evo-devo [31].

We also try to see how this explicit three-dimensional

embodiment can play a role in favoring the emergence of

innovations. We explore such a pre-body plan scenario, and its

potential for generating complexity, by allowing a physically-

embedded model of a cellular community to freely evolve. The

interaction between our simple evolved aggregates and the

environment is shown to trigger the emergence of ecosystem

engineering (EEN) an important component in macroevolutionary

patterns [32]. EEN can be defined as a modification of the abiotic

environment by a species that affects resource availability for other

species [33–37]. Because it involves a persistent ecological

Figure 1. Basic scheme of the components of the CHIMERA model. The system is confined within a rigid cube with a floor where particles fall
and to which cells can attach. Five additional square boundaries are also present which cannot be crossed. The upper boundary allows a flow of
nutrient particles (here small spheres) at a constant rate. Particles fall under gravity (a,b) and experience local turbulence as a random velocity field. As
they reach the floor, they can keep moving under the same flow and also disappear as they degrade (c) into detritus particles. Cells can evolve
adhesion among them (d) as well as with the substrate (e). Finally, cells and particles (f) ineract through collisions. If the cell is able to exploit that
particular type of energy, the particle involved disappears and is transformed into cell’s biomass (see text).
doi:10.1371/journal.pone.0059664.g001

Figure 2. Simplified geometry of cell-cell collisions. Here, ri and
rj are the cell positions, rij is the offset vector, Ri and Rj are the cell
radius, and RizRj{Drij D is the interpenetration depth.
doi:10.1371/journal.pone.0059664.g002
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modification, its presence implies the existence of ecological

inheritance.

As we will shown below, a simple model of physically interacting

cells with adhesion properties starting from a set of independent,

genetically identical cells exploiting a single energy resource (from

a given repertoire) evolves in time towards a spatially segregated

community involving a trophic chain. The ecological network

includes both a population of generalists feeding on all available

food sources along with a population of specialized detritivores.

The transition from the original monomorphic population to the

spatially organized aggregate with ecological structure takes place

through the emergence of an innovation grounded in evolving

adhesion between cells and walls as well as cell-cell adhesion. In

spite of its simplicity, it fairly well illustrates the potential of this

type of model to explore the emergence of major transitions in pre-

Mendelian scenarios.

Environment, Cells and Physical Simulation
In our model, evolution takes place within a spatially confined

environment (the spatial domain is a cube with floor and walls)

where physical forces play a role as external constraints.

Organisms are spatially embedded structures and their embodi-

ment is relevant as it provides the proper link with the external

world and the biotic scenario where other organisms inhabit.

Physical models of cell interactions have been developed for a

broad range of problems involving multicellular assemblies [38–

41] and our study follows some of the standard methods of

computational physics [42]. Figure 1 displays a basic scheme of the

system considered here along with the different components of the

physical interactions that will be taken into account.

1.1 Cells and particles
Our starting point is a population of single-cell organisms,

where each cell in the initial population is identical. Cells and

particles are simulated with rigid bodies moving within a fluid-like

environment. A cell (particle) has spherical geometry with radius

Ri, mass Mi, spatial position ri and velocity vi~dri=dt: The

motion of a cell is described by the standard second law:

Mi

dvi

dt
~Fi ð1Þ

Numerical integration gives cell velocity at time tzDt :

vi(tzDt)~vi(t)z
Fi

Mi

Dt ð2Þ

where Dt is the size of the integration step, and the total force

acting on Mi will be:

Fi~FezFc
i zFn

i zFl
i{kdvizMig ð3Þ

applied to any cell is the sum of environmental forces Fe, the

gravitational field g, the collision force Fc
i , the cell-wall adhesion

Fn
i and the cell-cell adhesion Fl

i term.

1.2 Environmental forces
For simplicity, we asume that the external environment exerts

the same force to every cell or particle, i. e.:

Fe~ken ð4Þ

where n is a random vector with DnD~1 and kew0 is a constant

parameter that indicates the strength of the external field. This

choice implies that external fluctuations in the fluid medium are

homogeneous, thus affecting all parts of the system uniformly. This

approximation thus neglects potential effects played by small-scale

eddies, which might actually play a role in adaptational changes.

Movement of particles in a fluid is subject to dissipation, as

defined by a viscous drag ({kdvi) where kd is the drag coefficient

associated to the surrounding fluid. The effect of drag is to resist

motion, making the particle gradually come to rest in the absence

of other influences.

1.3 Cell-cell collisions
We apply the discrete element method [43] to the computation

of collision forces between the i{th cell and all its interpenetrating

cells, that is, cells located at a distance below a given threshold (see

figure 2):

Fc
i ~
X
i=j

n vij{
rij

DDrij DD
vij

rij

DDrij DD

� �� �
zjvij{+Wij(rij ; Ri,Rj) ð5Þ

where n is the shear coefficient, j is the damping coefficient, k is

the spring coefficient, and rij~rj{ri is the offset vector between

the ri and rj cell positions, and vij~vj{vi is the difference

between cell velocities. The last term in the right-hand side gives

the force resulting from a potential function associated to a soft-

core interaction, namely.

Wij(rij ; Ri,Rj)~
1

2
k RizRj{DDrij DD
� �2 ð6Þ

Computation of spatial interaction forces requires N(N{1)=2
possible collision checks for N bodies in the worst-case scenario. In

order to reduce this computational load we will use a spatial

partitioning scheme. Here, a 3-D uniform grid subdivides the

entire container volume in equally-sized square voxels [42]. All the

bodies (cells and particles) are sorted by a mapping function h(r)
that computes their voxel index:

h(r)~
1

d
(r{o) ð7Þ

where o is the grid origin and d is the voxel size. For each body,

we only check their collisions with different particles and cells

belonging to a neighboring voxel, i.e., having indexes h(r) or

h(r)+1: By adjusting the size of the voxel partition, we can

minimize the total number of collision tests and enable the real-

time simulation of large numbers of physically interacting bodies.

1.4 Cell-substrate adhesion
Attachment of cells to surfaces may provide a favorable micro-

environment (e.g., biofilms). Cell-wall distance D(ri) is:

D(ri)~
axizbyizczizdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2zb2zc2
p ð8Þ

where axzbyzczzd~0 is the plane equation for the closest

wall to the cell located at ri~(xi,yi,zi): When a cell with adhesion
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strength to the substrate J
f
i w0 is closer than the adhesion range

dww0, i.e., D(xi)vdw, we attach a spring connecting the cell xi

with its projection on the wall xw
i (see figure 3). Now, the wall

spring exerts the following attraction force:

Fn
i ~{ks DDri{rw

i DD{ds

� � ri{rw
i

DDri{rw
i DD

ð9Þ

where ds is the spring equilibrium distance, ks is the spring

constant and Fi
n~0 when the cell is not attached to any spring.

Existing cell-wall springs can be removed with certain probability

1{q(i) or when the spring length is above the maximal length,

i.e., DDri{rw
i DDwdm

s : As we will see, cells can evolve cell-wall

adhesion J
f
i in order to maximize the intake of nutrient particles.

1.5 Cell-cell adhesion
Cells can form aggregates by attaching to other cells. Each cell

has an intrinsic probability Jc
i to create a new adhesion link. Given

two close cells located at ri and rj , we will set an adhesion string

connecting them with probability (Jc
i zJc

j )=2: The adhesion force

to any cell is the sum of forces contributed by all the active cell-cell

adhesion springs:

Fl
i~{

X
j

kl DDri{rj DD{dl

� � ri{rj

DDri{rj DD
ð10Þ

where dl is the spring equilibrium distance, and kl is the spring

constant. Adhesion springs break spontaneously with rate

d&0:001 or when the spring is very large, i.e., DDri{rj DDwdl :

On the other hand, interpenetration collisions between cells and

walls are not resolved with explicit forces (see figure 3A). When a

body interpenetrates a wall, it bounces along its negative velocity

direction, i.e., vi(tzDt)~mvi(t) by a constant factor mv0: In

addition, we relocate the body outside the wall (see below). This

approximation ensures that particles will never move beyond

container limits and does not change the main results presented

here. The final cell (or particle) position is obtained from:

ri(tzDt)~ri(t){dnzvi(tzDt)Dt ð11Þ

where dw0 is the cell-wall interpenetration distance and n is the

unit normal vector of the wall at the collision point with DnD~1 (see

figure 3A).

Finally, the computation of particle force f i is more simple than

in the case of cells. Food particles can collide with boundary walls,

other particles and with cells (see below). But particles cannot

adhere to the walls, or to any other body. The total force exerted

on a particle is

fi~Fezf
p
i zfc

i {kdvizg ð12Þ

where Fe is the environmental force (as defined for cells, see

above), vi is the particle velocity and g is the gravity field. Particle

collision force f
p
i is similar to the equation used to compute cell

collision responses (5) but using particle mass (M ) and radius (r):
Similarly, the term fc

i accounting for the collision response

between any pair of interpenetrating particles mirrors equation (5).

We have calibrated the parameters associated to the physics as

described above in order to avoid numerical instabilities. We have

used small integration steps, i.e., Dt~0:03 and fixed several

physical parameters, including the cell and particle masses and the

spring constants, to suitable values. An exhaustive exploration of

the physical parameter space will be investigated elsewhere.

Evolutionary Rules
Once our embodied, physical description of how interactions

take place within our environment, we need to further extend our

model by including evolutionary rules. Mechanical interactions,

for example, can be understood in terms of predefined mecha-

nisms (constrains derived from the nature of physical laws)

together with sets of parameters that tune their relevance in terms

of how different forces influence dynamics. In this paper we

explore the impact of such parameter changes once the basic laws

are already in place.

The introduction of physical constraints as part of the

framework defining our cells and their interactions allows us to

integrate different factors emerging at the boundaries between

physics and biology. Moreover, the explicit nature of selection

pressures associated with gathering nutrients from a spatially

explicit, fluctuating environment allows to explicitly introduce

ecological factors into play. In summary, the model takes into

account physical embodiment, ecological and evolutionary con-

straints and allows interaction parameters among cells to change.

Although no developmental programs or gene regulatory modules

can emerge at this level, we will see how the degrees of freedom

included in our approximation allow cell aggregates to emerge,

along with innovation and the creation of niches.

At any given time, there is a set of cells fCig and a set of energy

particles of identical mass m belonging to different energy types,

here indicated as Ek, with k~1,:::,np (here we use np~4 sources).

Each cell Ci can in principle metabolize a subset of different

sources with efficiency gik[½0,1�: At the beginning, we start from a

homogenous population of N0 cells, each having mass Mi~M0,
all feeding on the same resource, namely E1 i.e., gi1w0 and gij~0

for all jw1: At every simulation step, we introduce Np new

particles in the system (here we use Np~80, uniformly distributed

over each class) starting at the top of our world. This number

provides a quantitative value to the intake energy flow W of

particles entering the system.

Eventually, cells collide with nutrient particles and consume

them according to the cell-specific efficiency gij (a given nutrient

particle is consumed only when this is non-zero, otherwise the

particle is deflected and does not enter into the cell body). A

particle of class Ek will be successfully grazed contributing to a

linear mass increase:

Mi(tzDt)~Mi(t)zgikm ð13Þ

Once consumed, the particle is removed from the system.

Nutrient particles have a characteristic lifetime and degrade at rate

mp: Cells consume a constant amount of energy esw0 per time

step to sustain themselves. A cell dies when mass Mi falls below a

critical threshold MivMc: Cell death leads to disintegration and

the release of (Mi(t)=m)&(Mc=m) residual particles to the

medium. These detritus particles will be consumed by detritivores

when their associated efficiency is nonzero. Detritus particles have

also a characteristic lifetime and degrade with a slower degrada-

tion rate, here fixed to mp=2:

Cells divide once their total mass is at least twice their initial

mass, Mi(t)§2M0: After reproduction, the mother cell Ci

reduces its mass by M0, which is transferred to the daughter

cell, say Ck: In other words, we have

Evolutionary Transition to Multicellularity
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Mi?Mi{M0

Mk~M0

However, cell division is limited by the available surrounding

space. Here, we allow the mother cell to reproduce only when its

number of neighboring cells (i.e., cells within a radius of size 2Ri) is

below a given density threshold Nc: The new offspring is placed at

a random location close to the mother cell, and specific rules

ensure that this new cell is within the boundaries of the simulated

medium.

The offspring cell Ck inherits metabolic efficiencies from

the mother cell Ci: Metabolic efficiencies can be slightly changed,

i. e.,

gjk~gikzn

where n is non-zero with probability of mutation m&0:02 and zero

otherwise. Here, the random n perturbation follows a Gaussian

distribution with zero mean and standard deviation sm~0:3: In

addition, the offspring cell also inherits both cell-floor adhesion

and cell-cell adhesion coefficients, respectively. Again, mutations

are allowed to occur, and we have now:

J
f
k~J

f
i zn ð14Þ

Jc
k~Jc

i zn ð15Þ

The values of these parameters are always normalized between

zero and one. If a given mutation is accepted and the parameters

are either lower than zero or higher than one, they are fixed to

zero or one, respectively. Similarly, efficiencies are normalized so

that the condition
X

j
gij~1 is always satisfied.

Results

As a result of the previous set of rules and initial condition, we

have a simple ecological food web involving a set of resources and

a single specialist grazer, which takes E1 particles and grows at the

expense of metabolizing them. Further degradation of particles

leads to waste that is removed from the virtual tank and moreover

cell death also generates an additional resource (the detritus

compartment, Ed ). Ecologically, this is our starting point, which

will evolve as organisms change their feeding preferences and as a

consequence of interactions between organisms and their physical

environment.

Given the potential for evolving physical parameters as well as

nutrient intake-related parameters, our cells will be able to evolve

within a range of possible adaptations. For example, given the

number of potential food sources to be consumed, we will observe

a spread from the original parameter set defined by

gi1~1 \ gi,jw1~0 ð16Þ

to a continuum space of efficiencies

gi:f(gi1,:::,gin) D gij[½0,1�;
X

j

gij~1 g ð17Þ

As we will see below, these spread leads to a predictable outcome

in a first phase of the evolution process, while it leads to an

unexpected innovation later on.

1.1 Transition to generalism epoch
The first trend observed in all our simulations is a tendency

from the starting specialization (all cells exploiting one source with

maximal efficiency) to generalism: mutations allow to exploit other

resources with less efficiency but overall this is a better strategy

given the finite amount of energy particles. In our model, np~4
different types of energy particles are used. Additionally, since

detritus particles resulting from cell death can also be consumed, a

total of npz1 types of particles are available.

Nutrients enter the system from the upper layer at a constant

rate p and degrade into waste at a rate dk. Under the absence of

grazers, the time evolution of the number Nk of energy particles of

class k will follow a linear model dNk=dt~p{dpNk (for

k~1,:::,np) and thus each component will have an average steady

value of N�k~p=dp: Then, the overall number of particles at the

beginning (before grazing starts) will be N�~Wp=d with W~npp is

the total flow of incoming particles. Right at the beginning, our

grazers exploit only one source particle (say E1). If no mutations

were involved, we would observe a trend towards an equilibrium

population of both cells and class-one particles over time.

The above describes the basic dynamics that occurs at the very

early stages in our model, when only one source is being exploited.

However, since we are interested in the long-term evolution, we

would like to study the particle-grazer population dynamics. One

of the first trends easily observed in our model is the tendency

towards a broader range of exploitable resources, that is, grazers

become generalists. Such trend towards a more opportunistic

behavior occurs when the payoff given by the exploitation of a

variety of resources outweighs the loss of efficiency as more

resources are grazed.

The degree of generalism of a given individual is measured by

means cell entropy H(Ci) defined as as the normalized diversity of

efficiencies:

Figure 3. Possible interactions between cells and boundary
walls. (A) Bouncing collision takes place when the cell interpenetrates
the nearest wall any distance dw0 along the unit normal vector n of the
wall. (B) Cell-wall adhesion occurs when cell-wall distance is below
some threshold w and according to adhesion probability (which
depends on the cell genome, see text). In this case, a spring attaches
the cell to a fixed point wi on the wall (see text).
doi:10.1371/journal.pone.0059664.g003
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H(Ci; gi)~{
1

log (npz1)

X
1ƒjƒnpz1

gij log½gij � ð18Þ

where gij is the relative efficiency of the i-th cell when feeding on

the j{th nutrient resource and np is the number of different

resources. Notice that, in the initial configuration, all cells have

entropy H(Ci)~0: As defined, the degree of generalism will be

zero when only one source is used (specialized diet) and will reach

a maximum value for individuals grazing on multiple sources.

Similarly, since the average efficiency for each cell is given by

SgijT~
1

np(i)

X
j

gij ð19Þ

where np(i) indicates the number of nutrient sources exploited by

Ci, given the normalization of efficiencies we have simply

SgijT~1=np(i):

The simulation shows a steady increase of cell-wall attachment

and cell-cell adhesion followed by a steady increase in number of

cells. This is a consequence of the fact that, in order to get access to

falling particles, a larger surface is needed. Cells who attach to the

surface can climb up the walls. Having a moderate cell-cell

adhesion also helps in avoiding them to fall down. In this way, we

have formed aggregates that are moving up as cells divide. The

impact of this, along with the simultaneous tendency towards a

generalist grazing behavior, can be seen in figure 4. The cell

population (blue curve) grows rapidly as the aggregates start to

emerge and expand, eventually covering the top layer.

During the process, groups of cells, often forming layers parallel

to the floor, become increasingly larger. Three snapshots involving

transient steps (a-c) are also displayed in figure 4, where we have

used color-coded spheres to indicate the strength of the cell-wall

Figure 4. The time evolution of cells (blue) and particles (black) can be described with a sequence of processes. Before the transition
to the inverted population state (inset) cells grow and divide as they also evolve their characteristic parameters. At the beginning, the cell population
grows by adapting to the variety of energy sources and we can see a thick layer of cells (a) plotted at t~17000: After a while, an increase in the
surface displayed by the population increases its efficiency to gather particles. Such increase is reached by evolving cell-substrate and cell-cell
adhesion. The state shown in (b) is found at t~170000 where we can appreciate a cluster of cells which appear to be climbing the surface of the
cube. In (c) the cluster close to reaching the upper floor (here t~200000) at this point the cell population does not experience further significant
increase, but the number of particles decays to very low values. Here bright cells have high floor adhesion (where yellow indicates maximum
adhesion) and darker colors correspond to cells with low adhesion or free-moving. Notice that adhesion evolves first in cells close to the wall
boundaries. Here: W~25 particles per timestep, Dt~0:03, dw~0:05, ds~0:01, n~80, j~80, k~400, Mi~20, Ri~0:08, mi~3:35, ri~0:025, ke~2,
kd~0:001 (see text).
doi:10.1371/journal.pone.0059664.g004
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adhesion. Lighter and spheres indicate higher and lower levels of

adhesion, respectively.

1.2 Transition to ecosystem engineering epoch
As cells occupy the upper layer, the flow of nutrients further

declines (filled arrow, figure 4) to reach very low levels. The kinetics

of this process and how it is connected with evolving adhesion rates is

summarized in figure 5, where we plot the average cell-floor

adhesion (averaging over all the cell population) and the corre-

sponding average height of cells within the cube (inset). Here we

have used the top floor as the ground height (z~0) and the bottom

one as the minimum. For convenience, we have normalized the later

to z~{1: We can appreciate in these plots how rapidly the

selection for higher adhesion occurs. As a consequence of this

redistribution of cells through the upper part of the system, a whole

redistribution of flows takes place, effectively triggering the

emergence of a new ecological organization.

The most relevant result of our study is a key innovation made

by our evolving cell populations as they ‘‘discover’’ that gathering

particles is easier if they attach to the top floor of the system. As

discussed above, cells approach the nutrient source by evolving

cell-floor adhesion. This allows the population to expand its

effective area for gathering nutrients, but it also favors more

frequent interactions with particles, which are trapped between

cells and the walls. This makes intake slightly higher than far from

the boundary increases (and thus a higher fitness) because the

sustained intake of nutrients. Eventually, cells with high floor

adhesion (J
f
i &1) colonize the source of nutrients in a brief burst of

super-exponential growth. This is illustrated by figure 4d, where

we can see a snapshot of our system soon after cells have

‘‘discovered’’ the roof. In terms of the population dynamics, it is

also observed that the number of free nutrient particles declines as

they are more efficiently found and removed from the system.

The emergence of EEN is common but requires both a high

enough intake of energy (the flow of particles, W) and a moderate

level of environmental fluctuations. The analysis of these two

parameters reveals several phases in the potential types of

structures that the system generates. This is illustrated in figure 6

where we present a summary of our exploration of the parameter

space defined by (ke,W): The choice of these two parameters is

based on considering two relevant aspects associated to adaptation

in evolving systems. The amplitude of the external fluctuations (as

given by ke, see equation 4) provides a measure of the random

movements experienced by both cells and energy particles. In

order to approximately determine the boundaries of these phases,

the parameter space was partitioned into 25|25 pairs and

evolution experiments were done for each pair.

The phase diagram reveals four phases. As it should be

expected, at low flow levels the initial population cannot sustain

itself. However, it is interesting to notice that the domain of

extinction gets smaller for higher levels of perturbation. This is

understandable when we realize what that means. Since we use a

Figure 5. Sharp transition in the time evolution of average cell-
floor adhesion. This transition is associated to the increasing height
(inset) of the cell populations as further cells climb the walls towards
the upper layer. Here the top floor is taken as the zero coordinate,
whereas the bottom floor is taken as the z~{1 (normalized) minimum
(see text).
doi:10.1371/journal.pone.0059664.g005

Figure 6. Interplay between energy intake and environmental
fluctuations on the emergence of ecosystem engineering in
CHIMERA’s model. Here we have run CHIMERA using the same
parameters of the previous figure but with different combinations of
(ke,W): Four phases are found (a) including extinction (lower part),
cellular monolayers as well as multilayered systems. Examples of each
scenario are indicated with 3D snapshots where the adhesion strength
between cells and the boundaries is color coded. A quantitative analysis
of the transition from the EEN to the multilayer phase is indicated in (b),
where W~20 has been used along with different levels of fluctuation.

Ten replicas of each parameter combination were used and 2|105

steps used to determine the final state. The standard deviation is also
shown as error bars.
doi:10.1371/journal.pone.0059664.g006
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closed system, both cells and particles are influenced by external

noise and, at high levels, there is a coherent movement of both

types of elements, which end to aggregate in the corners of the

lower level. This introduces a natural increase of encounter rates

and thus allows cell survival more feasible. In a way, the high

environmental noise leads to a predictable outcome due to the

presence of boundary conditions.

The next phase (indicated in white color) involves a more or less

stable population of cells that are confined to the floor of the

system. Adhesion is high for low ke and decreases to small (but

non-zero) levels at higher levels. Here the population presents the

largest area compatible with the incoming flow. On top of this

phase, several layers can be stabilized. Well-defined smooth

multilayers are observed on the left part of the diagram whereas

they become a bit rugged on the right side, due to the presence of

noise. A moderate level of cell-cell interactions allows to stabilize

the system. It is within this phase that the initially multilayered

system can develop a more complex organization and EEN.

An example of the type of transition that occurs between phases

is illustrated in figure 6b. Here we have fixed the incoming flow to

W~20 and determined the presence or absence of a top

population of cells after 2|105 steps, using different ke values.

Averaging over ten replicas for each ke, we obtain a phase

transition close to the reported boundary. Around k�e&8 we

observe a phase change separating two clear domains associated to

the presence kevk�e or absence kewk�e of a top layer. The error

bars provide the standard deviation and are highest at the

transition point, consistently with so called second-order transi-

tions [44] where fluctuations strongly increase at criticality.

1.3 Emergence of detritivores
A major consequence is derived from this innovation. As cells in

the top layer start to dominate the whole flow of nutrients,

something new happens. After the colonization is completed, cells

die and their waste material falls to the bottom. The resulting

detritus stays for a while and is eventually removed by

degradation. But some cells have already developed a mild

efficiency to exploit these particles. After falling from the roof,

these cells will find themselves inhabiting a niche that is rich in a

given type of energy source. After a while, they develop a higher

efficiency and eventually become specialists. This is illustrated in

figure 7a–b, where we can see that the efficiency of detritivores

grows fast after the top floor population has been established.

In the inset of figure 7a we display an example of the stationary

state This transition illustrates the nonlinear impact of ecosystem

engineering [31–33]. By changing the flow of nutrients, the top

floor population causes a physical change in the environment due

to their spatial distribution. As it occurs with freshwater

phytoplankton organisms, which intercept light by placing

themselves on the top of the water column or with higher plants,

producing litter form dead leaves, our ecosystem provides a clever

example of this scenario. By modulating the flow of nutrients,

which eventually shifts from nutrient-rich to detritus-dominated

flows, an effective asymmetry is generated.

The process of niche creation and the emergence of ecosystem

engineering promote a new feedback towards the way detritivores

behave. If cell-cell adhesion is allowed to evolve, it can be shown

that the detritivore compartment evolves significant adhesion

among individual cells, which can be described as a new form of

Figure 7. Dynamics of detritus grazing. In (a) the increase in efficiency rate of detritus-grazing cells is shown. In (b) we display the population
dynamics of both detritivores (number of cells exhibiting some level of detritus feeding behavior) and detritus particles. In (c–f) four snapshots of the
evolved system are shown. Detritivores evolve initially at the corners between wall boundaries thanks to the increased concentration of residuals.
Afterwards, detritivores spread along the bottom plane and consume residuals produced by the disintegration of generalist cells coming from above.
Four snapshots are shown in (c-f) at different times in the evolution of detritivores. Hot colors indicate the relative detritivore efficiency. Here: W~25
particles per timestep, Dt~0:03, dw~0:05, ds~0:01, n~80, j~80, k~400, Mi~20, Ri~0:08, mi~3:35, ri~0:025, ke~2, kd~0:001 (see text).
doi:10.1371/journal.pone.0059664.g007
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cell aggregate. It is interesting to notice that our aggregates do not

cooperate in terms of sharing resources, but instead they emerge

from selection constraints imposed by the requirement of an

expanded area, which can only be obtained by attaching to the

vertical surfaces. An additional advantage is obtained by living in

higher locations: energy particles are falling near there and in fact,

in the presence of fluctuations, it is likely that particles hitting the

walls are captured by cells adhered to them. But the process has a

discontinuity: by covering the roof, an accelerated transformation

takes place, modifying the whole organization of the ecological

assembly and allowing the emergence of an additional trophic

compartment.

In figure 8 we summarize the ecological transitions experienced

by our system as we cross through the different regimes. Here we

have indicated the flows of matter from the external energy

sources to waste. In fig. 8a, the initial state of our system is shown,

with several sources of particles but only one being exploited by

the single specialist. Such scenario is slowly replaced by a

heterogeneous one (fig. 8b) marked by an increasing tendency to

generalism: mutations affect efficiency rates and the potential for

exploiting several resources. As evolution proceeds and cells

develop adhesion (here indicated as small protrusions) along with a

complete generalism (c). Here we indicate with fEig that cells use

equally all types of nutrients with the same coupling. Eventually (d)

the new niche of detritus-rich particles triggers the evolution of a

specialized population of detritivores . This result is predictable,

provided that the abundance of incoming particles is large enough.

Discussion

In this paper we have presented a spatially-explicit model of

evolution that incorporates ecology, physical embodiment and a

very simple description of individuals. Our motivation was to

provide an in silico platform to explore early stages of multicellular

evolution under a pre-Mendelian scenario. Such pre-Mendelian

world would be characterized by a higher morphological plasticity,

far from the gene-regulated one of the Cambrian world [11,18]. In

Figure 8. Chimera’s food webs. (a) Flows in the initial food web, limited to a population of single-cell elements eating only one energy source (E1)
as defined by the CHIMERA model. The 1st nutrient is processed by the cells and transformed into cellular components high efficiency. At the end of
the life cycle, the cell disintegrates into a number of residual particles. All molecules have similar degradation rates and get removed (right, lower
box) from the system. After a while (b) an intermediate, diverse ecosystem is observed, with a large variety of cell exploiting different resources. This
process proceeds until most cells become generalists, able to exploit all sources (c) whereas adhesion (indicated with smaller spheres) increases.
Finally, once the population attached to the top floor has developed, another specialized population emerges at the bottom, fully composed by
detritivores.
doi:10.1371/journal.pone.0059664.g008
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order to explore the potential repertoire of multicellular patterns

that can emerge under these conditions, we have used a specific

setting where a vertical flow of nutrients is introduced at the upper

boundary of our system.

If the initial steps towards life took place in water, an

appropriate model considering the role of physical interactions

must take into account (a) events taking place within a fluid and (b)

those associated to physical exchanges between individuals and

individuals with the boundaries of the system (such as the sea

bottom or a pond floor). By considering these basic forces, we

introduce a minimal set of (possible) rules of interaction that can

evolve through time. Such rules allow our artificial cells to explore

their environment, interact and make decisions. But it also

provides a very basic framework to explore the potential for

finding patterns of pre-developmental pathways based on interac-

tions among single-celled entities.

Despite the simplified nature of our simulation approach, which

prevents (in particular) the emergence of complex regulatory

networks and introduce limitations to the spatial organization of

cell aggregates, several nontrivial results emerge. The evolutionary

transition from the floor to the top layer leads to ecosystem

engineering [27] and, as far as we know, this is the first example of

such event happening in an artificial life system. By changing the

actual flow of nutrients, they cause a physical change in the

environment due to their physical distribution. Moreover, by

doing so they also allow the emergence of a specialized, spatially

segregated compartment of detritivores. Following the classifica-

tion scheme from [35], our artificial creatures are autogenic

engineers: they change their environment mainly via their own

physical structures. Here the main structure created is a cell

barrier associated to cell-floor interactions. The tempo of the

transition exhibits a marked acceleration as the cell aggregates

approach the top of the world. We can actually see that the cell

population moves through its world by increasing in size until they

detect the asymmetry associated to the top-down and start

exploiting it. As it occurs with any other system out of equilibrium,

our system is sustained by a gradient linked to a given flow of

energy. In terms of the innovation process, the punctuated nature

of the change is due to the transient time required in order to

physically reach the energy-rich boundary and exploit it.

Future work should consider the explicit introduction of

minimal genetic networks, the potential for cooperation in terms

of nutrient sharing, an active role of our organisms in modifying

their environmental conditions (thus adding an additional layer to

the potential for ecosystem engineering) and variability of spatial

conditions. These in silico experiments could be compared in some

cases with evolutionary sequences of growth and selection

observed in experiments involving transitions from single-cell to

multicellular aggregates [45–49]. In this context, it can help

designing and interpreting experimental approaches based on the

introduction of selection favoring given traits. All these extensions

of the CHIMERA model will allow us to approach relevant

questions concerning the tempo and mode of the transition to

multicellularity and how the different players (ecology, genetic

interactions, physical embodiment and path dependence) influence

the final outcome.

Finally, CHIMERA can be used to explore the effect of external

events involving large extinctions and their aftermath. Recovery

from mass extinction provides a unique insight into how

communities are rebuild and the role played by different biotic

and abiotic components in the reconstruction of a paleocommu-

nity [50,51]. This is very well illustrated by the end-Permian

extinction event [52,53] which devastated most species, to the

point of near annihilation of complex life forms. The existing fossil

record of the process and the patterns of change is very rich and

well established [54] an illustrates the power of looking at

macroevolutionary dynamics using multiple perspectives, from

geological data to multispecies interactions. Some theoretical and

computer models [55–57] have shown that a systems approach to

these events can help to determine potential causal scenarios of

recovery. But these models lack the physical embodiment that is

characteristic of our model both at the individual and ecosystem

levels. Since we also can trace the patterns of change in sediment

particles and have a well-established segregation between trophic

levels, we have a unique way of evaluating the relative

contributions of ecological processes of competition or cooperation

as well as the underlying evolutionary changes taking place at the

individual level. These in silico experiments can help understand-

ing the role played by altruism and cooperation and how they

emerge and the nature of the resulting cooperative units [58,59].
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