337 research outputs found

    The significance of a new locality for Monograptus thomasi (Early Devonian) southwest of Beaconsfield, Tasmania, and of the Corn Hill Formation

    Get PDF
    Monograptus thomasi, Early Devonian, occurs west of Cabbage Tree Hill, Beaconsfield, Tasmania, in rocks previously mapped as Cambrian. The occurrence constrains the location of a basal thrust considered to be a conduit for Late Devonian gold mineralisation. The Corn Hill Formation, which contains the graptolite, is significant in regional stratigraphic, palaeogeographic, structural and tectonic models

    Predator manipulation experiments: impacts on populations of terrestrial vertebrate prey

    Get PDF
    Quantifying the relative impacts of top-down vs. bottom-up control of ecosystems remains a controversial issue, with debate often focusing on the perennial question of how predators affect prey densities. To assess predator impacts, we performed a worldwide meta-analysis of field experiments in which the densities of terrestrial vertebrate predators were manipulated and the responses of their terrestrial vertebrate prey were measured. Our results show that predation indeed limits prey populations, as prey densities change substantially after predator manipulations. The main determinant of the result of an experiment was the efficiency of predator manipulation. Positive impacts of predator manipulation appeared to increase with duration of the experiment for non-cyclic prey, while the opposite was true for cyclic prey. In addition, predator manipulation showed a large positive impact on cyclic prey at low prey densities, but had no obvious impact at peak prey densities. As prey population densities generally respond predictably to predator manipulations, we suggest that control of introduced vertebrate predators can be used to effectively conserve and manage native wildlife. However, care should be taken when controlling native predators, especially apex species, owing to their importance as strong interactors and the biodiversity value of their habitats. We discuss gaps in our knowledge of predator-prey relationships and methodological issues related to manipulation experiments. An important guideline for future studies is that adequate monitoring of predator numbers before and during the experiment is the only way to ensure that observed responses in prey populations are actually caused by changes in predation impacts

    A review of camera trapping for conservation behaviour research

    Get PDF
    An understanding of animal behaviour is important if conservation initiatives are to be effective. However, quantifying the behaviour of wild animals presents significant challenges. Remote-sensing camera traps are becoming increasingly popular survey instruments that have been used to non-invasively study a variety of animal behaviours, yielding key insights into behavioural repertoires. They are well suited to ethological studies and provide considerable opportunities for generating conservation-relevant behavioural data if novel and robust methodological and analytical solutions can be developed. This paper reviews the current state of camera-trap-based ethological studies, describes new and emerging directions in camera-based conservation behaviour, and highlights a number of limitations and considerations of particular relevance for camera-based studies. Three promising areas of study are discussed: (1) documenting anthropogenic impacts on behaviour; (2) incorporating behavioural responses into management planning and (3) using behavioural indicators such as giving up densities and daily activity patterns. We emphasize the importance of reporting methodological details, utilizing emerging camera trap metadata standards and central data repositories for facilitating reproducibility, comparison and synthesis across studies. Behavioural studies using camera traps are in their infancy; the full potential of the technology is as yet unrealized. Researchers are encouraged to embrace conservation-driven hypotheses in order to meet future challenges and improve the efficacy of conservation and management processes

    Plasma photoemission from string theory

    Full text link
    Leading 't Hooft coupling corrections to the photoemission rate of the planar limit of a strongly-coupled {\cal {N}}=4 SYM plasma are investigated using the gauge/string duality. We consider the full order \alpha'^3 type IIB string theory corrections to the supergravity action, including higher order terms with the Ramond-Ramond five-form field strength. We extend our previous results presented in arXiv:1110.0526. Photoemission rates depend on the 't Hooft coupling, and their curves suggest an interpolating behaviour from strong towards weak coupling regimes. Their slopes at zero light-like momentum give the electrical conductivity as a function of the 't Hooft coupling, in full agreement with our previous results of arXiv:1108.6306. Furthermore, we also study the effect of corrections beyond the large N limit.Comment: 36 pages, 5 figures, paragraph added in the conclusions, references added, typos correcte

    When Does an Alien Become a Native Species? A Vulnerable Native Mammal Recognizes and Responds to Its Long-Term Alien Predator

    Get PDF
    The impact of alien predators on native prey populations is often attributed to prey naiveté towards a novel threat. Yet evolutionary theory predicts that alien predators cannot remain eternally novel; prey species must either become extinct or learn and adapt to the new threat. As local enemies lose their naiveté and coexistence becomes possible, an introduced species must eventually become ‘native’. But when exactly does an alien become a native species? The dingo (Canis lupus dingo) was introduced to Australia about 4000 years ago, yet its native status remains disputed. To determine whether a vulnerable native mammal (Perameles nasuta) recognizes the close relative of the dingo, the domestic dog (Canis lupus familiaris), we surveyed local residents to determine levels of bandicoot visitation to yards with and without resident dogs. Bandicoots in this area regularly emerge from bushland to forage in residential yards at night, leaving behind tell-tale deep, conical diggings in lawns and garden beds. These diggings were less likely to appear at all, and appeared less frequently and in smaller quantities in yards with dogs than in yards with either resident cats (Felis catus) or no pets. Most dogs were kept indoors at night, meaning that bandicoots were not simply chased out of the yards or killed before they could leave diggings, but rather they recognized the threat posed by dogs and avoided those yards. Native Australian mammals have had thousands of years experience with wild dingoes, which are very closely related to domestic dogs. Our study suggests that these bandicoots may no longer be naïve towards dogs. We argue that the logical criterion for determining native status of a long-term alien species must be once its native enemies are no longer naïve

    Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory

    Get PDF
    This article is meant as a summary and introduction to the ideas of effective field theory as applied to gravitational systems. Contents: 1. Introduction 2. Effective Field Theories 3. Low-Energy Quantum Gravity 4. Explicit Quantum Calculations 5. ConclusionsComment: 56 pages, 2 figures, JHEP style, Invited review to appear in Living Reviews of Relativit

    Radiographic closure time of appendicular growth plates in the Icelandic horse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Icelandic horse is a pristine breed of horse which has a pure gene pool established more than a thousand years ago, and is approximately the same size as living and extinct wild breeds of horses. This study was performed to compare the length of the skeletal growth period of the "primitive" Icelandic horse relative to that reported for large horse breeds developed over the recent centuries. This information would provide practical guidance to owners and veterinarians as to when the skeleton is mature enough to commence training, and would be potentially interesting to those scientists investigating the pathogenesis of osteochondrosis. Interestingly, osteochondrosis has not been documented in the Icelandic horse.</p> <p>Methods</p> <p>The radiographic closure time of the appendicular growth plates was studied in 64 young Icelandic horses. The results were compared with previously published closure times reported for other, larger horse breeds. The radiographs were also examined for any signs of developmental orthopaedic diseases. In order to describe further the growth pattern of the Icelandic horse, the total serum alkaline phosphatase (ALP) activity was determined and the height at the withers was measured.</p> <p>Results</p> <p>Most of the examined growth plates were fully closed at the age of approximately three years. The horses reached adult height at this age; however ALP activity was still mildly increased over baseline values. The growth plates in the digits were the first to close at 8.1 to 8.5 months of age, and those in the regions of the distal radius (27.4 to 32.0 months), tuber olecrani (31.5 to 32.2 months), and the stifle (27.0 to 40.1 months) were the last to close. No horse was found to have osteochondrosis type lesions in the neighbouring joints of the evaluated growth plates.</p> <p>Conclusion</p> <p>The Icelandic horse appears to have similar radiographic closure times for most of the growth plates of its limbs as reported for large new breeds of horses developed during the past few centuries. It thus appears that different breeding goals and the intensity of breeding have not altered the length of the growth period in horses. Instead, it can be assumed that the pristine and relatively small Icelandic horse has a slower rate of growth. The appendicular skeleton of Icelandic horses has completed its bone growth in length at approximately 3 years of age, and therefore may be able to enter training at this time.</p

    Magnitude, precision, and realism of depth perception in stereoscopic vision

    Get PDF
    Our perception of depth is substantially enhanced by the fact that we have binocular vision. This provides us with more precise and accurate estimates of depth and an improved qualitative appreciation of the three-dimensional (3D) shapes and positions of objects. We assessed the link between these quantitative and qualitative aspects of 3D vision. Specifically, we wished to determine whether the realism of apparent depth from binocular cues is associated with the magnitude or precision of perceived depth and the degree of binocular fusion. We presented participants with stereograms containing randomly positioned circles and measured how the magnitude, realism, and precision of depth perception varied with the size of the disparities presented. We found that as the size of the disparity increased, the magnitude of perceived depth increased, while the precision with which observers could make depth discrimination judgments decreased. Beyond an initial increase, depth realism decreased with increasing disparity magnitude. This decrease occurred well below the disparity limit required to ensure comfortable viewing
    corecore