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Abstract 35 

An understanding of animal behaviour is important if conservation initiatives are to be 36 

effective. However, quantifying the behaviour of wild animals presents significant challenges. 37 

Remote-sensing camera traps are becoming increasingly popular survey instruments that have 38 

been used to non-invasively study a variety of animal behaviours, yielding key insights into 39 

behavioural repertoires. They are well-suited to ethological studies and provide considerable 40 

opportunities for generating conservation-relevant behavioural data if novel and robust 41 

methodological and analytical solutions can be developed. This paper reviews the current state 42 

of camera-trap-based ethological studies, describes new and emerging directions in camera-43 

based conservation behaviour, and highlights a number of limitations and considerations of 44 

particular relevance for camera-based studies. Three promising areas of study are discussed: i) 45 

documenting anthropogenic impacts on behaviour; ii) incorporating behavioural responses into 46 

management planning; and iii) using behavioural indicators such as giving up densities and 47 

daily activity patterns. We emphasise the importance of reporting methodological details, 48 

utilising emerging camera trap metadata standards and central data repositories for facilitating 49 

reproducibility, comparison and synthesis across studies. Behavioural studies using camera 50 

traps are in their infancy; the full potential of the technology is as yet unrealised. Researchers 51 

are encouraged to embrace conservation-driven hypotheses in order to meet future challenges 52 

and improve the efficacy of conservation and management processes. 53 

 54 
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Introduction 58 

Animal behaviour is an important component of conservation biology (Berger-Tal et al. 2011), 59 

and, hence, is of considerable interest to researchers and wildlife managers (Caro and Durant 60 

1995). For example, behavioural studies can increase our understanding of species’ habitat 61 

requirements (Pienkowski 1979), reproductive behaviour (Cant 2000) and dispersal or 62 

migration (Doerr et al. 2011), and elucidate impacts of habitat fragmentation (Merckx and Van 63 

Dyck 2007) or climate change (Moller 2004). Animal behaviour can also be a useful 64 

monitoring tool, with individual and group-level responses used to evaluate the impacts of 65 

management (Morehouse et al. 2016). It is important, therefore, to incorporate behaviour into 66 

conservation planning; its omission limits efficacy of conservation actions and could lead to 67 

failure (Berger-Tal et al. 2011). The confluence of conservation biology and ethology has come 68 

to be known as ‘conservation behaviour’, wherein conservation problems are addressed by the 69 

application of behavioural research (Blumstein and Fernández-Juricic 2004; Berger-Tal et al. 70 

2011).   71 

Quantifying the behaviour of wild animals presents significant challenges. Direct 72 

observation of animals can allow the evaluation of individual responses to environmental 73 

stimuli. Such studies may be weakened, however, by the influence of the human observer on 74 

focal animals (Nowak et al. 2014) and limited by small sample size and logistical constraints 75 

(Bridges and Noss 2011). Furthermore, only a limited number of species and habitats are 76 

amenable to direct, field-based observations (e.g. larger species and those that can be 77 

habituated; and in open and accessible habitats). Many of these have already been the focus of 78 

direct behavioural research (Schaller 1967; Kruuk 1972; Caro 1994) or may be atypical of more 79 

common habitats and can lead to inconsistent results (Laurenson 1994 vs Mills and Mills 2014). 80 

In cases where focal animal(s) cannot easily be directly observed, the vast majority of field-81 

based behavioural studies have used radio (VHF) or satellite (GPS) telemetry, activity sensors 82 



and/or biologgers (e.g. Lewis et al. 2002; Grignolio et al. 2004; Shamoun-Baranes et al. 2012; 83 

Bouten et al. 2013). The advantages and disadvantages of these methods, which are currently 84 

the gold-standards for obtaining spatio-temporal behavioural data, are summarised in Table 1, 85 

highlighting that while these devices can provide powerful insights, they also have significant 86 

logistical and inferential limitations. Consequently, the suite of species that have had their 87 

behaviour quantified is biased and limited. New methods of obtaining behavioural data are, 88 

therefore, urgently required.   89 

Camera traps (i.e. cameras that are remotely activated via an active or passive sensor; 90 

hereafter referred to as CTs) offer a reliable, minimally-invasive, visual means of surveying 91 

wildlife that substantially reduces survey effort. CTs are increasingly popular in ecological 92 

studies (Burton et al. 2015; Rovero and Zimmermann 2016) and provide a wealth of 93 

information that is often of considerable conservation value (e.g. Ng et al. 2004; Di Bitetti et 94 

al. 2006; Caravaggi et al. 2016). Continued technological improvements and decreasing 95 

equipment costs (Tobler et al. 2008a), combined with their demonstrated versatility (Rovero et 96 

al. 2013), mean that CTs will only continue to grow in popularity. CT data take the form of a 97 

still image or video of an individual or a group of individuals, of one or more species, which 98 

have been detected within the camera and location-specific zone of detection. These images 99 

can be linked with additional information, including the date, time and location at which the 100 

image was recorded. CT surveys have been effectively used to quantify species diversity 101 

(Tobler et al. 2008b), relative abundance (Carbone et al. 2001; Villette et al. 2017) and 102 

population parameters (Karanth et al. 2006; Rowcliffe et al. 2008), demonstrate site occupancy 103 

of rare or cryptic species (Linkie et al. 2007) and describe species replacement processes 104 

(Caravaggi et al. 2016). CTs have also been used in behavioural studies (Bridges and Noss 105 

2011; Maffei et al. 2005). In a recent review of 266 CT studies, Burton et al. (2015) 106 



characterized one-third as addressing behavioural questions (e.g. activity patterns, diet; Table 107 

2). 108 

In this paper, we review some of the recent literature on animal behaviour as elucidated 109 

by camera trapping studies. We then describe a number of common issues encountered by 110 

researchers undertaking such surveys and, finally, suggest future avenues of research that may 111 

be of considerable benefit to conservation initiatives. This review serves as a point of reference 112 

for researchers and practitioners undertaking conservation-oriented CT surveys of animal 113 

behaviour. 114 

 115 

Current applications of camera traps to animal behaviour 116 

CTs are well-suited to ethological studies, providing increasing opportunities to 117 

undertake extensive and detailed sampling of wild animal behavioural repertoires (see Fig. 1 118 

and Table 2 for examples). The nature of the technology confers a number of important 119 

benefits. For example, CTs facilitate detailed studies of behaviours in species that were 120 

previously considered too small or elusive to be reliably observed in the field. CTs have been 121 

used to understand burrowing behaviour in <40g northern hopping-mice (Notomys aquilo; 122 

Diete et al. 2014) and olfactory communication in native and introduced <120g rats (Rattus 123 

sp.; Heavener et al. 2014). The use of CTs may also lead to a reduction in observer bias as, 124 

while a human observer is required to review collected images and assign individual and/or 125 

species identities and behaviours, cameras allow independent verification and recurrent 126 

analysis of observations. This is in contrast to conventional field methods for documenting 127 

behaviour, where it is rarely possible for another scientist to independently verify observational 128 

data. 129 



Many types of animal behaviours have been studied with CTs (Table 2), including 130 

foraging (Otani 2001), daily activity patterns (Tan et al. 2013), scent marking (Delgado-V. et 131 

al. 2011), movement (Ford et al. 2009), livestock depredation (Bauer et al. 2005), and use of a 132 

variety of habitat features including dens/burrows (Clapham et al. 2014), urban habitats (Marks 133 

and Duncan 2009), corridors (LaPoint et al. 2013)  and waterholes (Hayward and Hayward 134 

2012). CT studies have often yielded key behavioural insights that may otherwise have 135 

remained unknown, many of which could be important to conservation processes. For example, 136 

studies investigating the efficacy of highway crossings in Banff National Park, Canada, 137 

described the effectiveness of under- and over-passes, an expensive and controversial means 138 

of impact mitigation (Clevenger and Waltho 2000; Ford et al. 2009), which is now being 139 

duplicated in other parts of the world. Picman and Schriml (1994) observed the predators of 140 

quail (Coturnix coturnix) nests in a variety of habitats, elucidating temporal variation and 141 

relative importance of each predatory species. The application of this method to the study of 142 

threatened avifauna has clear conservation benefits via the identification of direct impacts on 143 

egg success and the development of appropriate mitigation and monitoring techniques. 144 

Similarly, cameras provide more accurate post-hibernation den-emergence estimates for 145 

American black bears (Ursus americanus) than conventional methods, i.e. den visits and radio 146 

telemetry (Bridges et al. 2004). Long-term monitoring of emergence relative to climate may 147 

yield important insights into the effects of climate change on black bears and other hibernating 148 

species (sensu Bridges and Noss 2011). 149 

The majority of ethological CT studies conducted thus far have been primarily 150 

curiosity-driven, rather than being motivated by applied conservation-focussed hypotheses. 151 

This is not to say that a large number of these studies do not have conservation value. On the 152 

contrary, the conservation relevance of the data is often explicitly discussed. It is apparent, 153 

however, that there is an increasing need for conservation-driven studies. CTs are among the 154 



most promising and flexible tools available and we are only beginning to explore their 155 

potential. 156 

 157 

Emerging directions in camera-based conservation behaviour 158 

The growth in popularity and application of CT surveys and novel solutions to non-behavioural 159 

questions of animal ecology (e.g. Rowcliffe et al. 2008; Martin et al. 2015; Bowler et al. 2016) 160 

suggests that creative methodological and analytical solutions will be increasingly used to 161 

investigate animal behaviours. If these novel studies are to be developed, it is important that 162 

researchers strive for true experimental designs focussed on conservation behaviour. A 163 

particular strength of CT surveys is the potential for multiple studies to be carried out 164 

concurrently (e.g. estimation of focal species population density and the species richness of the 165 

surveyed area). Thus, behaviour can be recorded alongside other important parameters, thereby 166 

facilitating insight into processes such as density-dependent behaviours and responses to 167 

climate change. New approaches are also being developed to move beyond correlational 168 

approaches and incorporate CTs into manipulative experiments, such as measuring animal 169 

behavioural responses to introduced stimuli (e.g. predator calls;  Suraci et al. 2016). 170 

Berger-Tal et al. (2011) described three ways in which behavioural research can be of 171 

conservation benefit: i) identifying the impact of  anthropogenic environmental changes on 172 

behaviour; ii) considering behavioural aspects of conservation initiatives (‘behaviour-based 173 

management’); and iii) identifying behavioural indicators which are suggestive of changes in 174 

populations or the environment. We use this framework as a basis for our recommendations, 175 

below.  176 

 177 

Anthropogenic impacts 178 



 179 

An important area of conservation research lies in understanding the influence of 180 

anthropogenic stressors on animal behaviours and predicting the resulting population-level 181 

responses in order to inform management practices. Stressors such as habitat fragmentation, 182 

disturbance, the creation of ecological traps and the introduction of non-native species can have 183 

significant effects on behaviour (Robertson and Hutto 2006) and, hence, fitness (Berger-Tal et 184 

al. 2011). For example, animals may exhibit increasing wariness in areas of greater disturbance 185 

(Stewart et al. 2016) and may change their daily activity patterns in close proximity to human 186 

populations (Carter et al. 2012). While anthropogenic impacts are generally negative, some 187 

species show benefits such as increased occupancy in fragmented landscapes (Fleschutz et al. 188 

2016), or using human activity to evade apex predators (Muhly et al. 2011; Steyaert et al. 2016). 189 

Impacts on one species may also have spillover effects on the wider ecological community 190 

(Wright et al. 2010; Clinchy et al. 2016).  191 

Habitat fragmentation, the division of large, connected habitats into small, isolated 192 

fragments separated by dissimilar habitats, is a major conservation issue (Haddad et al. 2015). 193 

Fragmentation has a wide range of potential impacts on species and ecosystems (e.g. via edge 194 

effects, patch size, shape and complexity and distance from other patches; Fahrig 2003), and 195 

these impacts may be mediated through effects on animal behaviour. CTs provide new 196 

opportunities for documenting behavioural responses to fragmentation. For example, the 197 

activity patterns of nine-banded armadillos (Dasypus novemcinctus) varied in association with 198 

forest patch size, among other factors, while patch time-since-isolation was predictive of agouti 199 

(Dasyprocta leporina) activity (Norris et al. 2010).  200 

The disruption of dispersal behaviour can lead to the endangerment and potential 201 

extinction of isolated populations by various mechanisms, including changes to genetic 202 

diversity and structure (Keyghobadi 2007), stochastic threats (Fischer and Lindenmayer 2007) 203 



and long-term displacement effects (Ewers and Didham 2005). Using CTs to document 204 

dispersal behaviour can improve understanding of responses to movement disruption 205 

(Blumstein and Fernández-Juricic 2004) and inform design and implementation of mitigation 206 

measures that encourage dispersal. Aimed at species with individually-identifiable markings 207 

or tags, individual-level analysis is potentially possible, although inferences about dispersal 208 

can also be drawn without individual identification. For examples, cameras are well suited to 209 

quantifying use of presumed dispersal routes or movement corridors, including mitigations 210 

designed to promote connectivity (e.g. highway crossings; Clevenger and Waltho 2005; Ford 211 

et al. 2009). CTs can also be used to identify colonization of new habitat patches (including 212 

range expansions or species invasions) and parameterize landscape connectivity models 213 

(Brodie et al. 2015).  214 

No studies have integrated environmental sensors into CT studies investigating 215 

anthropogenic impacts on behaviour, and we believe this is a promising area for future 216 

development. Local temperature, precipitation and humidity can readily be recorded, and 217 

phenocams can be used to document vegetation and environmental changes (Brown et al. 218 

2016). Collecting such information alongside CT-based behavioural data will allow us to 219 

increase our understanding of how animals respond to changing conditions at both large 220 

(population) and small (localities within home ranges) spatial scales. This is particularly 221 

important given the rapid changes that are predicted to occur under climate change. 222 

 223 

Behaviour-based management 224 

Berger-Tal et al. (2011) suggested that behaviour-sensitive management and behavioural 225 

modification are two key pathways through which ethology can inform active management for 226 

conservation. The former considers animal behaviour in the design of reserves and corridors, 227 



planning species reintroductions and translocations, and epidemiology with the goal of 228 

stabilising or increasing threatened populations or controlling pest or invasive species. 229 

Behavioural modification focuses on changing or preserving key behaviours within a focal 230 

population. CT surveys have the potential to inform both of these areas. 231 

Considering social dynamics is one important area in which CT surveys can inform 232 

behaviour-sensitive management. Social species, i.e. those that interact and/or live together, 233 

often exhibit complex inter-group relationships and social structure (Rowell 1966; Creel 1997; 234 

Archie et al. 2006; Wolf et al. 2007; Wey et al. 2008), that are susceptible to rapid change via 235 

the social displacement or death of one or more individuals. This can have severe consequences 236 

for the species and/or their environment (e.g. Nyakaana et al. 2001). Social Network Analysis 237 

(SNA) facilitates the study of relationships between nodes (i.e. individuals), within networks 238 

(i.e. social groups; Sueur et al. 2011). The methodology is increasingly used to study animal 239 

behaviour (Lusseau et al. 2006; Whitehead 2008; Voelkl and Kasper 2009; Jacoby and 240 

Freeman 2016). Examples of SNA demonstrating a direct benefit to conservation, however, are 241 

few. SNA studies are limited in that they require the reliable identification of individuals and, 242 

hence, are only applicable with CTs where animals exhibit individual characteristics or 243 

markings, or where marks (e.g. tags) can be attached. However, placing cameras in areas 244 

frequented by social groups such as feeding or resting sites, and with a sufficient number of 245 

units, could yield a considerable amount of important data for behaviour-sensitive 246 

management. Such site-specific studies have some limitations and incur biases that require 247 

evaluation. For example, individuals may not be equally detectable, or full groups may not be 248 

observed. Furthermore, it would be difficult to account for behaviours and social interactions 249 

which occur while away from the focal site. However, SNA analyses do not require constant 250 

observation of all group members to be effective (see Jacoby and Freeman 2016). Assessing 251 



potential bias with calibration by direct observation or other methods and placing observations 252 

in appropriate contexts is therefore important. 253 

SNA has the potential to increase our understanding of disease or pathogen 254 

transmission and individual or group vulnerability (Krause et al. 2007), an issue of particular 255 

relevance to the conservation of species which are susceptible to outbreaks (e.g. Hamede et al. 256 

2009). SNA studies have demonstrated that the removal of certain individuals (e.g. via hunting) 257 

can have a considerable effect on the stability of the social network (e.g. Flack et al. 2006), 258 

thus demonstrating their potential utility in elucidating the impacts of the bushmeat trade on 259 

inter- and intra-group dynamics in primates, for example. Furthermore, SNA has implications 260 

for reintroduction programmes, where the (re)construction of cohesive social structures in a 261 

captive setting would be necessary for the return of the focal species to the wild (Abell et al. 262 

2013). Studies of the relationships between individuals, therefore, can help us to understand 263 

how social behaviour is influenced by a variety of factors and, hence, provide an additional 264 

means by which practitioners can build an evidence base to address conservation questions. 265 

 CTs can also be applied to studies of behavioural modification. For example, Davies et 266 

al. (2016) investigated responses of African herbivores to changes in predation risk resulting 267 

from recently-reintroduced lions. Cameras could also be used to monitor animal responses to 268 

conflict mitigation measures such as the use of bees  or chilli to deter crop-raiding elephants 269 

(Karidozo and Osborn 2015; Ngama et al. 2016).  270 

 271 

Behavioural indicators 272 

The ways in which animals adapt their foraging behaviour in human-impacted environments 273 

have important implications for their abilities to adapt and persist under increasing pressures. 274 

Behavioural indicators can be used to assess the state of animals and the environments they 275 



inhabit, highlighting important conservation issues such as population decline or habitat 276 

degradation, or being used to monitor the efficacy of management (Berger-Tal et al. 2011). 277 

Behaviour effectively acts as an early-warning system, indicating changes to processes before 278 

they are evident through, for example, population decline. 279 

The giving up density (GUD; i.e. the amount of food left behind from a known starting 280 

quantity; Brown 1988) is one such behavioural indicator that has been used to study predation 281 

risk (Orrock 2004; Severud et al. 2011), energetic costs (Nolet et al. 2006), forager state and 282 

forage quality (Hayward et al. 2015), plant toxins (Emerson and Brown 2015), competition 283 

(Brown et al. 1997) and predator-prey dynamics (Andruskiw et al. 2008). It is also central to 284 

describing the “landscape of fear” (i.e. relative levels of predation risk within an area of use) 285 

of an animal and its habitat preferences, which are direct behavioural indicators with significant 286 

conservation implications (Kotler et al. 2016). CTs offer a relatively reliable way of using the 287 

GUD technique to ask more in-depth questions of conservation relevance. For example, CTs 288 

have been used to calculate GUDs for multiple species (Lerman et al. 2012), examine (Mella 289 

et al. 2015), and differentiate individual versus group foraging habits (Carthey and Banks 290 

2015).  These observations can then be used to inform the development of hypotheses relating 291 

to the broader effects of local food and predator abundance, predation pressure and inter- and 292 

intra-specific competition. With advancements in CT technology and creative experimental 293 

design, a wealth of conservation-focussed GUD applications are now possible.  294 

A key strength of CTs lies in collecting data on multiple species, either as bycatch in a 295 

focal study, or as part of a specific multi-taxa investigation. Accordingly, there has been an 296 

increasing focus on assessing species interactions and niche partitioning via comparisons of 297 

co-occurrence and activity patterns (de Almeida Jacomo et al. 2004; Kukielka et al. 2013; 298 

Farris et al. 2014; Wang et al. 2015; Bu et al. 2016; Cusack et al. 2016; Sweitzer and Furnas 299 

2016). Animal activity patterns are shaped by a number of factors, including foraging 300 



efficiency (Lode 1995), predator/prey activity (Middleton et al. 2013), photoperiodism 301 

(McElhinny et al. 1997), and competition (Rychlik 2005). Conservation-focussed studies using 302 

these methodologies, however, are scarce. Changes in the way species interact and use the 303 

landscape may be indicative of responses to changing environmental pressures and, hence, can 304 

direct development of early conservation strategies. For example, brown bears (Ursus arctos; 305 

Ordiz et al. 2013) altered their movement patterns and wolverines (Gulo gulo; Stewart et al. 306 

2016) behaved differently when faced with human disturbance, potentially impacting their 307 

ecosystem roles and, hence, associated species and habitats. Disturbance of the activity patterns 308 

of one or more species in a dynamic interaction, particularly ecological competitors or 309 

predators and prey, can therefore be interpreted as indicative of environmental changes and, 310 

hence, suggest additional lines of enquiry and highlight areas of conservation concern. 311 

 312 

Scaling-up 313 

Cameras can be used to monitor large-scale biodiversity conservation processes (O’Brien et al. 314 

2010; Ahumada et al. 2013) and investigate animal behaviour on a landscape scale. Scaling-up 315 

CT networks would provide stronger, larger-scale inferences on spatio-temporal variation in 316 

behaviours (Steenweg et al. 2016). Studies conducted on a broader scale have inherent 317 

limitations, however, that are not necessarily considerations for more localised investigations. 318 

The trade-off between the scale of investigation and camera array density has spatio-temporal 319 

implications which must be considered when designing a study, formulating hypotheses and 320 

deriving inferences from resultant data. Broad-scale studies are also ostensibly limited by the 321 

number of researchers available to place and check cameras and process data. The recruitment 322 

of volunteers (i.e. citizen scientists), however, offers a means of expanding the scope of 323 

research (Cohn 2008), greatly expanding spatial coverage and delivering a wealth of temporally 324 



comparable data (McShea et al. 2016). Emerging large-scale camera monitoring initiatives, 325 

such as Snapshot Serengeti (www.snapshotserengeti.org; Swanson et al. 2015) and Wildcam 326 

Gorongosa (www.wildcamgorongosa.org) demonstrate the benefits of this approach. CT 327 

projects utilising citizen science have the potential to deliver a substantial amount of 328 

behavioural data (McShea et al. 2016) and inform conservation processes. However, few large-329 

scale studies utilising citizen science involve behavioural analyses. CT video data can produce 330 

vast amounts of video footage but the extraction of key behavioural data from video footage is 331 

time consuming, imposing a major obstacle. Crowdsourcing video interpretations can 332 

overcome this limitation, however, and the use of robust ethograms, simple training regimes 333 

and blinding of observers to treatments can assuage concerns about the reliability of citizen 334 

science interpretations (e.g. Carthey 2013).  335 

Synthesising across projects offers another means of conducting broader analyses 336 

(Steenweg et al. 2016). We recommend that researchers embrace emerging CT metadata 337 

standards and associated opportunities to use common  data repositories such as Wildlife 338 

Insights (www.wildlifeinsights.org; Forrester et al. 2016), thus increasing the potential for the 339 

synthesis of inferences across large scales. The value of current data repositories is reduced, 340 

however, by their reliance on static images and omission of video. While it is possible to derive 341 

important behavioural data from still images, videos are undoubtedly more informative and an 342 

important future direction for CT-based behavioural research. Expenses notwithstanding, it is 343 

in the interests of conservation behaviour researchers to establish a digital repository for video 344 

data. 345 

 346 

 347 

Relevant limitations and considerations 348 

http://www.snapshotserengeti.org/
http://www.wildcamgorongosa.org/
http://www.wildlifeinsights.org/


Despite the great promise of new insights in conservation behaviour from CTs, it is important 349 

to consider potential limitations. CTs are passive instruments; thus, while it is possible to 350 

identify animals according to species, age-class (Clapham et al. 2014), sex (Bezerra et al. 2014) 351 

or, indeed, identify individuals (Karanth et al. 2006; Zheng et al. 2016), the collection of 352 

biometric, genetic and other data of interest requires the application of supplementary or 353 

alternative methodologies. Furthermore, CTs are frequently considered to be non-intrusive, 354 

causing little to no disturbance. However, while the sound produced by recording units is 355 

largely inaudible to humans, it is frequently detected by wildlife (Meek et al. 2014a). Similarly, 356 

CTs which utilise visible light (as opposed to infra-red) increase the chances of the camera 357 

being detected by animals, potentially disrupting their natural behaviour (Meek et al. 2016a).  358 

Camera failure, although rare, can result in the loss of large quantities of data.  359 

Similarly, camera theft is becoming increasingly common (Meek et al. 2016b). It is therefore 360 

necessary to balance the frequency of visits to maintain CTs with risk of data loss.  To 361 

accommodate this, it is advisable to build some redundancy into the study design, such as the 362 

use of cameras that allow the transmission of images via Global Packet Radio Service (GRPS) 363 

and/or Wi-Fi and can therefore facilitate remote data collection and inform the timing of 364 

maintenance visits. 365 

Detailed analysis of a target species’ behavioural repertoire requires the use of video 366 

footage which often exposes the technical limitations of CT equipment. Many cameras offer 367 

only limited length of videos (e.g. 60 seconds), requiring the camera to be retriggered to 368 

continue the capture of the behaviours and, hence, creating gaps in the observation. Some 369 

cameras have a slow trigger time meaning that initial behaviours, which might be the most 370 

important in terms of measuring detection of a stimulus (rather than the response), can be 371 

missed. Sampling the behaviours of small species can be particularly challenging, with CTs 372 

typically designed for deer-sized game species (Weerakoon et al. 2014), a problem that will 373 



require novel solutions. For example, flash-illuminated images are frequently obscured by 374 

overexposure when close enough to small mammals to observe behaviour clearly, whereas at 375 

the correctly exposed distance, animals can be too far away to reliably identify species or 376 

discern behaviours. Furthermore, understanding the reliability of camera surveys for 377 

addressing multi-species objectives remains an important area of methodological research (see 378 

Burton et al. 2015). Multi-taxa studies also require careful planning to ensure that CTs are 379 

appropriately located and adequately spaced to maximise the chances of capturing a diverse 380 

species assemblage. The choice and placement of cameras should, therefore, be dictated by the 381 

objectives of the study, the ecology of the study species, the statistical sampling framework 382 

and associated considerations.  383 

An oft-repeated concern relates to study repeatability; specific details of study design 384 

(e.g. how survey sites were chosen, use of lures) and camera protocols (e.g. camera model, 385 

deployment details) are often lacking (Meek et al. 2014b; Burton et al. 2015). A number of 386 

factors influence the detection of individuals (see Burton et al. 2015) and sampling details may 387 

have important implications for analytical assumptions such as effective sampling area and site 388 

independence (Harmsen et al. 2010; Mccoy et al. 2011; du Preez et al. 2014; Newey et al. 389 

2015). Comprehensive methodological descriptions and utilisation of emerging CT metadata 390 

standards (Forrester et al. 2016) are important for facilitating reproduction, comparison and 391 

synthesis across studies.  392 

Finally, as with any survey method, observations from CTs are incomplete and may 393 

contain biases that affect inferences. As noted above, species and individuals may vary in their 394 

detectability by CTs according to attributes such as body size, movement speed, curiosity and 395 

wariness. Behaviours observed by CTs may also not always be representative of behaviours 396 

more generally. It is thus incumbent upon researchers to remain vigilant for potential biases 397 



and test CT-based inferences through comparison and calibration with more established 398 

ethological methods. 399 

 400 

 401 

Conclusions 402 

CTs are rapidly increasing in popularity, and their application to conservation behaviour is 403 

growing.  Recent efforts to coordinate camera studies across large-scales through 404 

methodological standardization and/or better reporting of methodologies and metadata will 405 

facilitate broader ethological inferences on species’ behavioural responses to environmental 406 

change. The development and application of new techniques and analytical methods explicitly 407 

focussed on anthropogenic impacts, behaviour-based management and behavioural indicators 408 

would undoubtedly benefit conservation programmes. CTs are not a panacea, but they confer 409 

many benefits to researchers and the diversity of possible applications is gradually being 410 

realised. We hope that this paper will act as a catalyst, advancing the adoption of CT technology 411 

within conservation behaviour. It is important, therefore, that potentially profitable avenues of 412 

investigation are identified and pursued if we are to maximise the generation of valuable data 413 

and, hence, improve the conservation outlook for the ever-increasing number of threatened or 414 

endangered species.   415 
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Table 1. Potential advantages and disadvantages of three conventional methods commonly 

used to collect animal behavioural data. These are not necessarily contextual constants. For 

example, GPS accuracy is affected by vegetation density. Similarly, activity sensors may return 

detailed or simplistic data, depending on the device used. VHF = Radio telemetry tags; GPS = 

Global Positioning System tags; ACC = activity sensors; CT = camera traps. 

  Method 

Advantages VHF GPS ACC CT 

Allows independent data verification      

Collection of biometric data during 

deployment 
  



Combined analysis of movement and 

trait-based data 
    1,2   

Detailed data2,3,4*  
  

Habitat associations  




Identification of specific behaviours     * 

Landscape-scale  




Low cost   
   * 

Low survey effort    *   *   * 

Multi-taxa surveys    


Range analyses  




Disadvantages         

Bias from handling focal animal(s)5,8   


Disturbance effects      * 

Expensive  
   * 

Limited sample size   


Negative impacts on focal animal(s) 

during backpack/collar deployment7 
  



Requires ground-truthing to avoid 

inferential error4,5,6 
  




Simplistic data*    9 

Stationary    


Technological failure    

Triangulation/location error5       

* Device, environment and/or species-dependent 

1 Grignolio et al. (2004) 
2 Lewis et al. (2002) 
3 Bouten et al. (2013) 
4 Shamoun-Baranes et al. (2012) 
5 Bridges and Noss (2011) 
6 Ware et al. (2015) 
7 Barron et al. (2010) 
8 Wilson et al. (1986) 
9 Coulombe et al. (2006) 



Table 2. Examples of behavioural observations of wildlife via camera trapping. Species are 

ordered chronologically following the date of corresponding references. 

Behaviour Species References 

Active period Agouti (Dasyprocta punctata) and ocelot 

(Leopardus pardalis) 

Suselbeek et al. 2014 

Guizhou snub-nosed monkey (Rhinopithecus 

brelichi) 

Spotted-tailed quoll (Dasyurus  maculatus) 

Claridge et al. 2004 

 

Tan et al. 2013 

Antipredator responses Bush rat (Rattus fuscipes) Carthey and Banks 2016 

Bathing/wallowing Giant anteater (Myrmecophaga tridactyla) Emmons et al. 2004 

Crossing roads Bare-nosed wombats (Vombatus ursinus) Crook et al. 2013 

Daily activity Clouded leopard (Neofelis  nebulosa), golden cat 

(Catopuma temminckii), and 4 other felids 

Tayra (Eira barbara) 

Giant otter (Pteronura brasiliensis) 

12 terrestrial mammal species 

Azlan and Sharma 2006 

 

Delgado-V. et al. 2011 

Leuchtenberger et al. 2014 

Rowcliffe et al. 2014 

Denning American black bear (Ursus americanus) Bridges et al. 2004  

Foraging Yakushima macaque (Macaca fuscata yakui) 

Tayra (Eira barbara) 

Otani 2001 

Delgado-V. et al. 2011 

Migration Bald eagle (Haliaeetus leucocephalus), black 

vulture (Coragyps atratus) and 5 other birds of 

prey 

Jachowski et al. 2015 

Nest predation Predators exploiting quail (Coturnix coturnix) 

eggs 

Picman and Schriml 1994 

Phenological changes  Elk (Cervus elaphus) Brodie et al. 2012 

Positional behaviour Bare-tailed woolly opossum (Caluromys 

philander) 

Dalloz et al. 2012 

Resource partitioning Cape fox (Vulpes chama), caracal (Caracal 

caracal), honey badger (Mellivora capensis) and 

9 other carnivores 

Edwards et al. 2015 

Response to human-

animal conflict  

Tiger (Panthera tigris) and associated prey 

species 

Johnson et al. 2006 

Scent marking Tayra (Eira barbara) 

Eurasian lynx (Lynx lynx) 

Delgado-V. et al. 2011 

Vogt et al. 2014 

Social behaviour Blonde capuchin (Sapajus flavius) 

Giant otter (Pteronura brasiliensis) 

Bezerra et al. 2014 

Leuchtenberger et al. 2014 

Temporal avoidance Jaguar (Panthera onca) and puma (Puma 

concolor) 

Romero-Muñoz et al. 2010 

Travel speed 12 terrestrial mammal species Rowcliffe et al. 2016 

Waterhole use 15 species of ungulates, 5 birds, 3 mega-

herbivores, 2 primates and 5 carnivores 

Hayward and Hayward 2012 
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Figure 1. Examples of animal behaviour captured by camera traps: a) Scent marking by an 

American black bear (Ursus americanus); b) intraspecific competition in moose (Alces alces); 

c) interspecific interactions between a European hare (Lepus europaeus; anti-predator 

response), a common buzzard (Buteo buteo; avoidance and attempted predation) and a hooded 

crow (Corvus cornix; anti-predator behaviour) captured on video (available at 

10.6084/m9.figshare.4508369); d) predation of a European rabbit (Oryctolagus cuniculus) by 

a red fox (Vulpes vulpes); e) investigation of a squirrel feeding station by a pine marten (Martes 

martes); f) nut caching by a grey squirrel (Sciurus carolinensis). Images provided by A.C. 

Burton (a, b), A. Caravaggi (c, d) and C.M.V. Finlay (e, f). 


