1,068 research outputs found

    SYNTHESIS AND EVALUATION OF ANTIMICROBIAL ACTIVITY OF QUINAZOLINONE DERIVATIVES

    Get PDF
    Objective: The present study aims to synthesis and evaluation of antimicrobial activity of quinazolinone derivatives. Methods: Methyl anthranilate react with acetyl chloride in ethanol gives methyl-2 acetamido benzoate (1) which on reaction with hydrazine hydrate gives 3-amino-2 methyl 4-(3H)-quinazolinone.(2) The amino group of synthesized quinazolinone with substituted acid chloride which gives 3-Chloroacetyl amino-2-methyl-4-quinazolinone (3) which on condensation with various primary amines gives 2-(2-methyl-4-oxo-4H-quinazoline-3yl-amino)-N-substituted acetamide (4a-4j). Results: The reaction sequence involves microwave-induced preparation of methyl-2 acetamido benzoate (1) from reaction of Methyl anthranilate react with acetyl chloride in ethanol. Further reaction with hydrazine hydrate gives 3-amino-2 methyl 4-(3H)-quinazolinone. (2) The amino group of synthesized quinazolinone with substituted acid chloride which gives 3-Chloroacetyl amino-2-methyl-4-quinazolinone (3) which on condensation with various primary amines gives 2-(2-methyl-4-oxo-4H-quinazoline-3yl-amino)-N-substituted acetamide (4a-4j). Which were characterized by IR and 1HNMR spectral data. Conclusion: All the synthesized compounds were screened for antimicrobial activity by Broth dilution method. Most of the derivatives showed good antimicrobial activity against Gram-Positive and Gram-negative bacteria

    Properties of Al-doped ZnS films grown by chemical bath deposition

    Get PDF
    Zinc sulphide (ZnS) buffer layers are a cadmium free, wider energy band gap, alternative to the cadmium sulphide(CdS) buffer layers commonly used in copper indium gallium diselenide (CuInGaSe2)-based solar cells. However extrinsic doping of the ZnS is important to lower the resistivity of the layers and to improve flexibility of device design. In this work, Al-doped ZnS nanocrystalline films have been produced on glass substrates using a chemical bath deposition (CBD) method. The Al- concentration was varied from 0 at. % to 10 at. %, keeping other deposition parameters constant. The elemental composition of a typical sample with 6 at. % β€˜Al’ in ZnS was Zn=44.9 at. %, S=49.8 at. % and Al=5.3 at.%. The X-ray diffraction data taken on these samples showed a broad peak corresponding to the (111) plane of ZnS while the crystallite size varied in the range, 8 – 15 nm, depending on the concentration of Al in the layers. The films with a Al-doping content of 6 at. % had an optical transmittance of 75 % in the visible range and the energy band gap evaluated from the data was 3.66 eV. The films n-type electrical conductivities and the electrical resistivity varied in the range, 107-103 Ξ©cm, it decreasing with an increase of the Al-concentration in the solution

    AUTOMATIC DOCUMENT CLUSTERING

    Get PDF
    ABSTRACT Automatic document clustering has played an important role in the field of information retrieval. The aim of the developed this system is to store documents in clusters and to improve its retrieval efficiently. Clustering is a technique aimed at grouping a set of objects into clusters. Document clustering is the task of combining a set of documents into clusters so that similar type of documents will be store in one cluster. We applied non overlapping method to store document into cluster. In this project, we write an algorithm which will calculate similarity of document's keywords and according to its similarity points it will either put into existing cluster or new cluster is created and stored into that cluster. To find keywords from document various techniques are used like tokenization, stop word removal, stemmer, TF*IDF calculation

    SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF NOVEL 5-((1H-INDOL-3-YL) METHYLENE)-2-((4-(3A, 4, 5, 6, 7, 7A-HEXAHYDRO-4, 7-METHANEBENZO[D] ISOOXAZOL-3-YL) PHENYL) IMINO)-3-METHYLTHIAZOLIDIN-4-ONE DERIVATIVES

    Get PDF
    Abstract-A series of novel 5-((1H-indol-3-yl) methylene)-2- ((4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenyl) imino)-3-methylthiazolidin-4-one derivatives were synthesized and evaluated for their antibacterial and antifungal activity. The structures of the synthesised compounds were determined by IR, NMR, mass spectroscopy and elemental analysis. They were screened for activities against bacterial and fungal strains. Amongst the synthesised compounds 9b, 9e, 9i, 10g, 10h & 10i were found to be active

    Synthesis of Single Phase Hg-1223 High Tc Superconducting Films With Multistep Electrolytic Process

    Full text link
    We report the multistep electrolytic process for the synthesis of high Tc single phase HgBa2Ca2Cu3O8+ (Hg-1223) superconducting films. The process includes : i) deposition of BaCaCu precursor alloy, ii) oxidation of BaCaCu films, iii) electrolytic intercalation of Hg in precursor BaCaCuO films and iv) electrochemical oxidation and annealing of Hg-intercalated BaCaCuO films to convert into Hg1Ba2Ca2Cu3O8+ (Hg-1223). Films were characterized by thermo-gravimetric analysis (TGA) and differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrolytic intercalation of Hg in BaCaCuO precursor is proved to be a novel alternative to high temperature-high pressure mercuration process. The films are single phase Hg-1223 with Tc = 121.5 K and Jc = 4.3 x 104 A/cm2.Comment: 17 Pages, 10 Figures. Submitted to Superconductor Science and Technolog

    Solidification of Al alloys under electromagnetic pulses and characterization of the 3D microstructures under synchrotron x-ray tomography

    Get PDF
    A novel programmable electromagnetic pulse device was developed and used to study the solidification of Al-15 pct Cu and Al-35 pct Cu alloys. The pulsed magnetic fluxes and Lorentz forces generated inside the solidifying melts were simulated using finite element methods, and their effects on the solidification microstructures were characterized using electron microscopy and synchrotron X-ray tomography. Using a discharging voltage of 120 V, a pulsed magnetic field with the peak Lorentz force of ~1.6 N was generated inside the solidifying Al-Cu melts which were showed sufficiently enough to disrupt the growth of the primary Al dendrites and the Al2Cu intermetallic phases. The microstructures exhibit a strong correlation to the characteristics of the applied pulse, forming a periodical pattern that resonates the frequency of the applied electromagnetic field

    Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis

    Get PDF
    Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base

    Recent Trends in Development of High Voltage Circuit Breakers with SF6 Alternative Gases

    Get PDF
    The available knowledge of state-of-the-art of SF6 alternative gases in switching applications was collected and evaluated in an initiative of the Current Zero Club together with CIGRE. The present contribution summarizes the main results of this activity and will also include the latest trends. The main properties and switching performance of new gases are compared to SF6. The most promising new gases are at the moment perfluoroketones and perfluoronitriles. Due to the high boiling point of these gases, in HV applications mixtures with CO2 are used. For MV insulation perfluoroketones are mixed with air, but also other combinations might be possible. The dielectric and switching performance of the mixtures, with mixing ratios that allow sufficiently low operating temperatures, is reported to be only slightly below SF6. Minor design changes or de-rating of switchgear are therefore necessary. Differences between the gas mixtures are mainly in the boiling point and the GWP

    Effect of Asymmetry in the Modulation Parameters on Self-Focusing of Asymmetric Finite Airy-Gaussian Laser Beam in Collisionless Plasma

    Get PDF
    The self-focusing/defocusing of asymmetric finite Airy-Gaussian (AiG) laser beam has been investigated by employing standard Wentzel–Kramers–Brillouin (WKB) and paraxial-ray approximations in a nonrelativistic regime for underdense plasma. The second-order non-linear coupled differential equations have been solved numerically by using the fourth-order Range-Kutta method. The effect of asymmetry in the modulation parameters on the self-focusing/defocusing of the asymmetric finite AiG laser beam in collisionless plasma has been studied. It is observed that the self-focusing/ defocusing of asymmetric finite AiG laser beam is strongly connected with the initial values of the laser and plasma parameters such as modulation parameters and plasma frequency

    The Role of Alpha 6 Integrin in Prostate Cancer Migration and Bone Pain in a Novel Xenograft Model

    Get PDF
    Of the estimated 565,650 people in the U.S. who will die of cancer in 2008, almost all will have metastasis. Breast, prostate, kidney, thyroid and lung cancers metastasize to the bone. Tumor cells reside within the bone using integrin type cell adhesion receptors and elicit incapacitating bone pain and fractures. In particular, metastatic human prostate tumors express and cleave the integrin A6, a receptor for extracellular matrix components of the bone, i.e., laminin 332 and laminin 511. More than 50% of all prostate cancer patients develop severe bone pain during their remaining lifetime. One major goal is to prevent or delay cancer induced bone pain. We used a novel xenograft mouse model to directly determine if bone pain could be prevented by blocking the known cleavage of the A6 integrin adhesion receptor. Human tumor cells expressing either the wildtype or mutated A6 integrin were placed within the living bone matrix and 21 days later, integrin expression was confirmed by RT-PCR, radiographs were collected and behavioral measurements of spontaneous and evoked pain performed. All animals independent of integrin status had indistinguishable tumor burden and developed bone loss 21 days after surgery. A comparison of animals containing the wild type or mutated integrin revealed that tumor cells expressing the mutated integrin resulted in a dramatic decrease in bone loss, unicortical or bicortical fractures and a decrease in the ability of tumor cells to reach the epiphyseal plate of the bone. Further, tumor cells within the bone expressing the integrin mutation prevented cancer induced spontaneous flinching, tactile allodynia, and movement evoked pain. Preventing A6 integrin cleavage on the prostate tumor cell surface decreased the migration of tumor cells within the bone and the onset and degree of bone pain and fractures. These results suggest that strategies for blocking the cleavage of the adhesion receptors on the tumor cell surface can significantly prevent cancer induced bone pain and slow disease progression within the bone. Since integrin cleavage is mediated by Urokinase-type Plasminogen Activator (uPA), further work is warranted to test the efficacy of uPA inhibitors for prevention or delay of cancer induced bone pain
    • …
    corecore