#L http://heteroletters.org

ISSN: 2231 – 3087(print) / 2230 – 9632 (Online) Vol. 2: (3), 2012, 311-325

SYNTHESIS AND ANTIMICROBIAL ACTIVITY OF NOVEL 5-((1*H*-INDOL-3-YL) METHYLENE)-2-((4-(3A, 4, 5, 6, 7, 7A-HEXAHYDRO-4, 7-METHANEBENZO[D] ISOOXAZOL-3-YL) PHENYL) IMINO)-3-METHYLTHIAZOLIDIN-4-ONE DERIVATIVES

S. P. Vartale*, Y. D. Pawar & N. K. Halikar

P.G. Research centre,
Department of chemistry,
Yeshwant Mahavidyalaya, Nanded-431602 (MS) India.
Email: spvartale@gmail.com.

Abstract- A series of novel 5-((1*H*-indol-3-yl) methylene)-2-((4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenyl) imino)-3-methylthiazolidin-4-one derivatives were synthesized and evaluated for their antibacterial and antifungal activity. The structures of the synthesised compounds were determined by IR, NMR, mass spectroscopy and elemental analysis. They were screened for activities against bacterial and fungal strains. Amongst the synthesised compounds **9b**, **9e**, **9i**, **10g**, **10h** & **10i** were found to be active.

Keywords: Thiazolidin-4-one, Indole, Isoxazolines, Antimicrobial, Antifungal

Introduction

Thiazolidinones are a class of important heterocyclics containing sulphur and nitrogen in a five member ring, and has been considered as a magic moiety (wonder nucleus) which posses almost all types of biological activities.

Among five-membered heterocycles, isoxazolines represent a class of compounds of great biological importance. For instance, isoxazolines possess a broad spectrum of biological activity^{1,2}. Isoxazoline also serves as an important building block for the synthesis of biologically active molecules² and serves as a prodrug for an antiarthritic agent³. In fact, "Valdecoxib" is an isoxazoline derivative, now widely used in the market as an anti-inflammatory drug⁴. Isoxazoline derivatives have been reported to possess antifungal⁵, antibacterial⁶, anticonvulsant⁷, anti-inflammatory⁸, antiviral⁹, analgesic¹⁰, antitumor¹¹, chemotherapy ¹² activity. Isoxazoline derivatives also show a good potency in animal models of thrombosis¹³. In addition, isoxazoline derivatives have played a crucial role in the theoretical development of heterocyclic chemistry and are also used extensively in organic synthesis^{14,15}. 1, 3-Dipolar cycloaddition reactions are useful tools for the construction of biologically potent five-member heterocycles², and nitrile oxides serve as excellent 1,3-dipoles. Cycloaddition of nitrile oxides to olefinic compounds are of synthetic interest, since the resulting isoxazolines are versatile intermediates for the synthesis of bifunctional compounds¹⁶. Nitrile oxides can be generated by dehydrogenation of aryl

aldoximes with mercuric acetate¹⁷, manganese dioxide¹⁸, *tert*-butyl hypochlorite¹⁹, chloramine-T²⁰, NCS, and TEA²¹.

The wide applications of thiazolidin-4-one and Indole have prompted us to work in the area of thiazolidinone chemistry. In continuation of our work²², we have prepared Indole-thiazolidin-4-ones having isoxazoline as a side chain and their various sulfonyl, acyl and benzoyl derivatives. All the synthesized compounds were screened for their biological evaluation.

5.1.2: Result and Discussion

The synthesis starts with reaction of 4-nitrobenzaldehyde 1 with hydroxyl amine hydrochloride and sodium acetate in AcOH to afford 4-nitrobenzaldehyde oxime 2. The product was confirms by mass spectroscopy, which shows m/z at 167.2 for [M+1]. The 4nitrobenzaldehyde oxime 2 was treated with NCS in DMF at rt to get N-hydroxy-4nitrobenzimidoyl chloride 3. The product was confirms by mass spectroscopy, it shows m/z at 201.5 for [M+1]. The N-hydroxy-4-nitrobenzimidoyl chloride 3 was further treated with TEA and bicyclo [2.2.1] hept-2-ene in diethylether at 0 °C to get nitrophenyl-4-(3a, 4, 5, 6, 7, 7ahexahydro-4,7-methanobenzo[d]isooxazol-3-yl) 4. The formation of product was confirms by the mass spectroscopy, it shows m/z at 259.2 for [M+1]. The nitrophenyl-4-(3a, 4, 5, 6, 7, 7ahexahydro-4, 7-methanobenzo[d] isooxazol-3-yl) 4 on catalytic reduction by using H₂, Pd/C in MeOH afforded 4-(3a, 4, 5, 6, 7, 7a-hexahydro-4,7-methanobenzo[d] isooxazol-3-yl)-benzamine 5. The product shows m/z at 229.3 for [M+1]. The 4-(3a,4,5,6,7,7a-hexahydro-4,7methanobenzo[d]isooxazol-3-yl)-benzamine 5 was further treated with methyl-isothiocynate in EtOH at 80°C to afford the 4-(3a,4,5,6,7,7a-hexahydro-4,7-methanobenzo[d]isooxazol-3-yl) phenyl)-3-methylthiourea 6. The formation of product was confirms by the mass spectroscopy, it shows m/z at 301.90 for [M+1]. The (4-(3a,4,5,6,7,7a-hexahydro-4,7-methano-benzo [d] isooxazol-3-yl)-phenyl)-3-methylthiourea 6 was treated with ethyl bromoacetate in presence of DIPEA in refluxing EtOH afforded the key intermediate 2-((4-(3a,4,5,6,7,7a-hexahydro-4,7methanobenzo [d]isooxazol-3-yl)phenyl) imino)-3-methylthiazolidin-4-one 7 with 69% yield.

In the IR spectrum of the compound 7 the strong absorption bands at 1726 cm⁻¹ (C=O), 1631 cm⁻¹ (C=C), 1612 cm⁻¹ (C=N) and 617 cm⁻¹ (C-S-C) confirmed the presence of C=O, C=C, C=N and C-S-C functional groups respectively. The ¹HNMR spectrum of compound 7 shows three multiplets between 1.11-1.15, 1.26-1.43 and 1.45-1.50 ppm each integrating for two protons each respectively was due to the protons of three methylene groups of bicyclic ring. Two singlets each integrating for one proton resonated at 2.41 and 2.46 ppm were due to methine protons of bicyclic ring. A singlet at 3.16 ppm was due to methyl group attached to nitrogen for three protons. Two doublets each integrating for one proton at 3.65-3.67 (=C-CH) and 4.57-4.59 (O-CH) ppm were assigned to the methine protons at bicyclic and isooxazoline ring fusion. Another singlet at 4.03 ppm integrating for two protons was due to the protons of methylene group attached to S-atom of iminothiazolidin-4-one ring. Aromatic protons shows two doublets between 7.00- 7.02 and 7.68-7.70 ppm each integrating for two protons with coupling constant of 8Hz. The mass spectrum shows a peak at m/z=342.0 [M+1] was in tune with the molecular formula C₁₈H₁₉N₃O₂S. All these spectral values and analysis data confirmed the gross structure of the key intermediate 2-((4-(3a, 4, 5, 6, 7, 7a-hexahydro-4,7-methanobenzo[d] isooxazol-3-yl) phenyl) imino)-3-methylthiazolidin-4-one 7.

The key intermediate 2-((4-(3a, 4, 5, 6, 7, 7a-hexahydro-4,7-methanobenzo[d] isooxazol-3-yl) phenyl) imino)-3-methylthiazolidin-4-one 7 was then subjected to Knoevengel

condensation with Indole-3-carboxyladehyde with piperidine, AcOH and absolute EtOH at 80°C to give 5-((1H-indol-3-yl) methylene)-2-((4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo [d] isooxazol-3-yl) phenyl) imino)-3-methylthiazolidin-4-one 15²³. In the IR spectrum of the compound **8** the strong absorption bands at 3309 cm⁻¹ (N-H), 1689 cm⁻¹ (C=O), 1641 cm⁻¹ (C=C), 1593 cm⁻¹ (C=N) and 609 cm⁻¹ (C-S-C) confirms the presence of N-H, C=O, C=C, C=N and C-S-C functional groups respectively. In ¹³CNMR spectra, methyl group attached to nitrogen observed at 29.92 ppm. Imino carbon of thiazolidin-4-one observed at 156.74 ppm. The olefinic carbon observed at 151.47 ppm. The carbonyl carbon of thiazolidin-4-one ring observed at 166.41 ppm. The ¹HNMR spectrum of compound 8 shows two multiplets between 1.12-1.17, 1.30-1.51 ppm integrating for two and four protons respectively was due to the three methylene groups of bicyclic ring. Two singlets each integrating for one proton resonated at 2.41 and 2.46 ppm was due to methine protons of bicyclic ring. Singlet at 3.16 ppm was due to methyl group attached to nitrogen for three protons. Two doublets each integrating for one proton at 3.67-3.69 (=C-CH) and 4.58-4.60 (O-CH) ppm was assigned to the methine protons at bicyclic and isooxazoline ring fusion. Aromatic protons shows two doublets between 7.08-7.10 and 7.73-7.75 ppm each integrating for two protons with J=8Hz. Two aromatic protons shows a multiplet at 7.12-7.24 ppm intregating for two protons. Two doblet observed at 7.47-7.49 and 7.85-7.87 ppm intregating for one proton each respectively with J=8 Hz. A sharp singlet at 7.64 ppm was due to olefinic proton. Another sharp singlet at 8.02 ppm was due to aromatic proton near to Indole nitrogen. A broad singlet at 11.95 ppm exchangeable with D₂O was due to Indole NH. The mass spectrum shows a peak at m/z = 469.3 [M+1] in positive polarity and a peak at m/z =467.3 [M-1] in negative polarity was in tune with the molecular formula C₂₇H₂₄N₄O₂S. All the spectral values and analysis data confirmed the gross structure of the key intermediate 2-((4-(3a, 7a-hexahydro-4,7-methanobenzo[d] isooxazol-3-yl) 7, phenyl) methylthiazolidin-4-one 8.

To complete the synthesis of various derivatives, the title compound 8 reacted with sulfonyl chlorides in presence of TEA and DMAP in a catalytic amount at rt to afford the sulfonyl derivatives 9a-9l as shown in Scheme 2. Interestingly, all N-sulphonylated products formed in excellent yields (Table 1). Furthermore all the reaction has been done at rt in shortest period of time (Table 1). All these derivatives were prepared by reaction of 8 with various sulfonyl chlorides in DCM as a solvent in presence of TEA (2.0 mol.) and DMAP (0.10 mol.) as a catalyst at rt to afford the compounds 9a-9l with excellent yields. (Table 1). The crude product obtained was recrystallised in EtOH. The yields obtained and the time required to complete the

conversion is presented in the **Table 1**. All compounds obtained are solid and having colour in the range of pale yellow to dark yellow. The yields and melting points are summerised in the **Table 1**.

Table 1: Physical characterization data of compound 9a-91							
Compound	Physical State	Mp (°C)	Yield (%)	Molecular Formula	CHN Analysis (%) Calculated Found		
					C	Н	N
9a	Yellow Solid	195-197	72	C ₃₀ H ₃₀ N ₄ O ₄ S ₂	65.57	4.86	9.00
7a	1 chow Bolla	173-177	12	C301130114O4O2	65.60	4.96	8.91
9b	Yellow Solid	213-215	64	$C_{33}H_{27}N_5O_6S_2$	60.63	4.16	10.71
	1 0110 // 2 0110			033212/11/30/02/	60.60	4.11	10.68
9c	Yellow Solid	177-178	72	$C_{28}H_{26}N_4O_4S_2$	61.52	4.79	10.25
					61.70	4.85	10.23
9d	Yellow Solid	176-178	68	$C_{35}H_{32}N_4O_5S_2$	64.40	4.94	8.58
					64.33	4.88	8.60 8.94
9e	Yellow Solid	185-187	66	$C_{33}H_{27}FN_4O_4S_2$	63.32	4.24	8.99
					61.62	4.23	8.71
9f	Yellow Solid	194-196	60	$C_{33}H_{27}CIN_4O_4S_2$	61.59	4.33	8.70
	T 11 G 1: 1	100 100	60		57.64	3.96	8.15
9 g	Yellow Solid	189-192	68	$C_{33}H_{27}BrN_4O_4S_2$	57.71	4.01	8.19
Oh	Yellow Solid	198-200	59	CHNOS	53.95	3.70	7.63
9h	Yellow Solid	198-200	39	$C_{33}H_{27}IN_4O_4S_2$	53.86	3.85	7.70
9i	Yellow Solid	173-175	67	C ₃₄ H ₃₀ N ₄ O ₅ S ₂	63.93	4.73	8.77
<i>/</i> 1	1 CHOW SOIIG	1/3-1/3	07		63.99	4.79	8.88
9j	Yellow Solid	180-182	78	$C_{33}H_{28}N_4O_4S_2$	65.11	4.64	9.20
	20110 (50114	100 102	, Ŭ	C331128114O4S2	65.23	4.73	9.23
9k	Yellow Solid	190-192	72	$C_{35}H_{32}N_4O_4S_2$	66.02	5.07	8.80
		-		33 32 T-T-2	66.00	5.09	8.77
91	Yellow Solid	188-190	73	$C_{34}H_{30}N_4O_4S_2$	65.67	5.86	9.00
	- 1110 (65.65	5.90	9.05

In IR spectrum of the compound **9c**, the strong absorption bands at 1709 cm⁻¹ (C=O), 1639 cm⁻¹ (C=C), 1597 cm⁻¹ (C=N), 1369 & 1172 cm⁻¹ (SO₂), and 609 cm⁻¹ (C-S-C) confirmed the presence of C=O, C=C, C=N, SO₂ and C-S-C functional groups respectively. The ¹HNMR spectrum of compound 9c shows two multiplets between 1.03-1.17, 1.30-1.50 ppm integrating for three and four protons respectively was due to the three methylene protons and a methine proton of bicyclic ring. A singlet observed at 2.44 ppm was due to another methine proton of bicyclic ring. A sharp singlet at 3.31 ppm was due to methyl group attached to nitrogen for three protons. Another sharp singlet for three protons at 3.59 ppm was due to methyl group attached to sulfonyl group. Two doublets integrating for one proton each at 3.69-3.71 (=C-CH) and 4.59-4.61 (O-CH) ppm was assigned to the methine protons at bicyclic and isooxazoline ring fusion. Aromatic protons of phenyl ring attached to isooxazoline shows two doublets between 7.12-7.14 and 7.75-7.77 ppm each integrating for two protons with J=8Hz. Two aromatic protons show a multiplet at 7.12-7.24 ppm intregating for two protons. Two doublet observed at 7.47-7.49 and 7.85-7.87 ppm intregating for one proton each respectively with J=8 Hz. A multiplet at 7.40-7.51 ppm was due to two aromatic protons. A sharp singlet at 7.58 ppm was due to olefinic proton. Two doublets each integrating for one proton at 7.86-7.88 and 8.03-8.05 ppm was due to aromatic protons. Another sharp singlet at 7.97 ppm was due to aromatic proton next to Indole nitrogen. The mass spectrum shows a peaks at m/z = 547.3 [M+1], 548.2 [M+2], 549.2 [M+3] in positive polarity. All the spectral values and analysis data confirmed the gross structure of the key intermediate 2-((4-(3a, 4, 5, 6, 7, 7a-hexahydro-4,7-methanobenzo[d] isooxazol-3-yl) phenyl) imino)-3-methylthiazolidin-4-one 9c.

The title compound **8** reacted with different acyl and substituted benzoyl chlorides in DCM with TEA and DMAP in a catalytic amount at rt to afford the **10a-10j** in excellent yields **(Scheme 3, Table 2)**. In IR spectrum of the compound **10c**, the strong absorption bands at 1678 cm⁻¹ (C=O), 1639 cm⁻¹ (C=C) and 1597 cm⁻¹ (C=N) confirmed the presence of C=O, C=C and C=N functional groups respectively. The ¹HNMR spectrum of compound **10c** shows two multiplets between 1.23-1.27, 1.55-1.62 ppm integrating for two and five protons respectively was due to the three methylene protons and a methine proton of bicyclic ring. Two singlets observed at 2.60 and 2.68 ppm was due to another two methine protons of bicyclic ring. A sharp singlet at 3.46 ppm was due to methyl group attached to nitrogen for three protons. Two doublets integrating for one proton each at 3.52-3.54 (=C-CH) and 4.69-4.71 (O-CH) ppm was assigned to the methine protons at bicyclic and isooxazoline ring fusion. Aromatic protons of phenyl ring

attached to isooxazoline shows a doublet between 7.01-7.03 integrating for two protons with J=8Hz. Three aromatic protons show a multiplet at 7.26-7.45 ppm intregating for three protons. A sharp singlet at 7.50 ppm was due to aromatic proton. A multiplet at 7.59-7.61 integrating for one proton was also due to the aromatic proton. Another multiplet integrating for five aromatic protons of phenyl ring attached to carbonyl carbon at 7.69-7.80 ppm. A sharp singlet at 7.95 ppm was due to olefinic proton. One doublets integrating for one proton at 8.29-8.31 ppm was due to aromatic protons. The mass spectrum shows a peaks at m/z=573.3 [M+1], 574.4 [M+2] in positive polarity. All the spectral values and analysis data confirms the gross structure of the key intermediate 2-((4-(3a, 4, 5, 6, 7, 7a-hexahydro-4,7-methanobenzo[d] isooxazol-3-yl) phenyl) imino)-3-methylthiazolidin-4-one **10c**.

Table 2: Physical characterization data of compound 10a-10j							
Compound	Physical State	Mp (°C)	Yield (%)	Molecular Formula	CHN Analysis (%) Calculated Found		
					C	H	N
10a	Yellow Solid	183-184	73	C ₂₉ H ₂₆ N ₄ O ₃ S	68.21	5.13	10.97
10a	1 chow Solid	103-104	13	C2911261N4O3S	68.28	5.23	10.90
10b	Yellow Solid	195-197	76	C ₃₀ H ₂₈ N ₄ O ₃ S	68.68	5.38	10.68
100	1 chow Sond	193-197	70	C3011281N4O3S	68.80	5.32	10.72
10c	Yellow Solid	172-173	75	C ₃₄ H ₂₈ N ₄ O ₃ S	71.31	4.93	9.78
100	1 chow bond	172 173	13	C3411281N4O3S	71.23	5.00	9.80
10d	Yellow Solid	181-183	64	C ₃₄ H ₂₇ ClN ₄ O ₃ S	67.26	4.48	9.23
100	1 chow bond	101 103	04		67.20	4.51	9.14
10e	Yellow Solid	196-198	62	C ₃₄ H ₂₇ BrN ₄ O ₃ S	62.67	4.18	8.60
100	Tenow Bond	170 170	02	C34112/D1114C3S	62.70	4.24	8.71
10f	Yellow Solid	204-206	60	C ₃₄ H ₂₇ IN ₄ O ₃ S	58.46	3.90	8.02
	Tenow Bond	201200	00	C34112/11 14 C3 C	58.58	3.88	8.10
10g	Yellow Solid	197-199	62	C ₃₄ H ₂₇ FN ₄ O ₃ S	69.14	4.61	9.49
	Tono W Sond	10, 100	02	C3411271 1N4O3S	69.23	4.59	9.55
10h	Yellow Solid	228-230	62	C ₃₄ H ₂₇ N ₅ O ₅ S	66.11	4.41	11.34
		=20 20 0	"-	034112/113030	66.23	4.51	11.23
10i	Yellow Solid	215-217	64	C ₃₅ H ₃₀ N ₄ O ₄ S	69.75	5.02	9.30
					69.66	5.07	9.42
10j	Yellow Solid	226-228	75	C ₃₆ H ₃₂ N ₄ O ₄ S	70.11	5.23	9.08
_ ~ J	2 2110 11 50114		"	C301132114O40	70.23	5.21	9.16

Experimental Section

The newly synthesized compounds were characterized on the basis of IR, ¹HNMR and mass spectroscopy method. IR spectrums were recorded on Schimadzu 8201 PC, FTIR spectrophotometer in KBr phase. Proton NMR spectrum were recorded on Bruker Advance II 400 & 200 MHz NMR Ultra Shield Spectrometer using DMSO-d₆/CDCl₃ as a solvent and tetramethyl silane (TMS) as internal standard. Chemical shift values are expressed in parts per million (ppm). Melting points were determined with Buchi B-545 melting point apparatus in degree celsius and are uncorrected. Mass spectra were recorded on either Buker daltanoics Micro TOFQ or Quattro Primer XE. Elemental analyses were performed on a Heraeus CHN-O rapid analyzer. All the reactions were monitored by using precoated silica gel plates, followed by UV detection at 254nm, exposure to iodine vapours.

Synthesis of 4-nitrobezaldoxime (2)

A mixture of 4-nitrobenzaldehyde 1 (10 gm, 0.066 mol.), hydroxylamine hydro chloride (6.85 gm, 0.099 mol.) and Sodium acetate (11.9 gm, 0.145 mol.) in AcOH was stirred at rt for 2.5 hours. After completion of reaction (TLC check; 50% EtOAc: hexane), reaction mixture was poured in water and the solid precipitated was separated by filtration and dried under vacuum to get 10.2 gm 4-nitrobezaldoxime 2.

Yellow powder, (90% Yield), EI-MS (m/z): 167.1 [M+1]

Synthesis of N-hydroxy-4-nitrobenzimidoyl chloride (3)

A mixture of 4-nitrobezaldoxime 2 (10 gm, 0.06 mol.) and NCS (9.31 gm, 0.07 mol.) in DMF was stirred at rt for 2.5 hours, after completion of reaction (TLC check; 50% EtOAc: hexane), reaction mixture was poured in water and aqueous layer was extracted with EtOAc (3×25 ml). Organic layer was washed with 25% brine solution and evaporated to get 10.2 gm N-hydroxy-4-nitrobenzimidoyl chloride 3 with 85% yield.

Yellow powder, (85% Yield), EI-MS (m/z): 201.5 [M+1]

Synthesis of (nitrophenyl)-((4-(3a, 4, 5, 6, 7, 7a-hexahydro-4,7-methano-benzo[d] isooxazol-3-yl) (4)

To a solution of N-hydroxy-4-nitrobenzimidoyl chloride **3** (10 gm, 0.05 mol.) in diethylether was added bicyclo [2,2,1] hept-2-ene (5.17 gm, 0.055 mol.) and reaction mixture was cooled to 0°C for 10 min. TEA (15.34 ml, 0.11 mol.) was added to it and reaction mixture was allowed to come at rt. After completion of reaction (TLC check; 1:1 Hexane:EtOAc) reaction mixture was partitioned between diethylether and water, organic layer seperated, washed with 25% brine solution and evaporated to get yellow solid. Crude yellow solid was stirred in 250 ml hexane for 15 min, filtered and dried under vacuum to get 10.6 gm of (nitrophenyl)- ((4-(3a,4,5,6,7,7a-hexahydro-4,7-methanobenzo [d] isooxazol-3-yl) **4**. Pale Yellow powder, (73% Yield), EI-MS (m/z): 259.1 [M+1]

Synthesis of (4-(3a,4,5,6,7,7a-hexahydro-4,7-methanobenzo[d] isooxa- zol-3-yl) benzamine (5)

To a solution of (nitrophenyl)-((4-(3a,4,5,6,7,7a-hexahydro-4,7-methanobenzo[d] isooxazol-3-yl) 4 (10 gm, 0.039 mol.) in MeOH (50ml) Pd/C (1 gm, 10% w/w) was added and reaction mixture was stirred under H₂ atmosphere at rt for 12 hours. After completion of reaction

(TLC check; 1:1 Hexane:EtOAc), reaction mixture was cooled, filtered through a pad of celite and washed with MeOH. Filtrate was evaporated to get reddish residue. The residue was diluted with water and extracted with EtOAc (3×50 ml). The organic layer was evaporated to get sticky red solid. Crude solid was stirred in 250 ml hexane for 15 min, filtered and dried under vacuum to get 7.1 gm of (4-(3a,4,5,6,7, 7a-hexahydro-4,7-methanobenzo[d]isooxazol-3-yl) benzamine 5. Light pale yellow powder, (80% Yield), EI-MS (m/z): 229.1 [M+1]

Synthesis of (4-(3a,4,5,6,7,7a-hexahydro-4,7-methanobenzo[d]isooxa- zol-3-yl) phenyl)-3-methylthiourea (6)

To a solution of (4-(3a,4,5,6,7,7a-hexahydro-4,7-methanobenzo[d]isooxazol-3-yl) benzamine **5** (5 gm, 0.021 mol.) in EtOH (30 ml) methylisothiocynate (1.6 gm, 0.027 mol.) was added and reaction mixture was heated at 80-85°C for 6 hour. After completion of reaction (TLC check; 1:1 Hexane:EtOAc), reaction mixture was cooled to rt and EtOH was removed under vacuum. Water (30 ml) was added to the residue and stirred for 15 min. The solid separated was filtered and trituted with 50% EtOH in water (20 ml). The solid was filtered and dried under vacuum to give 5.7 gm of 4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanobenzo [d] isooxazol-3-yl) phenyl) -3-methylthiourea **6**.

Off-white powder, (86% Yield), EI-MS (m/z): 301.90 [M+1]

Synthesis of 2-((4-(3a,4,5,6,7,7a-hexahydro-4,7-methanobenzo[d]iso- oxazol-3-yl) phenyl) imino)-3-methylthiazolidin-4-one (7)

To a solution of (4-(3a,4,5,6,7,7a-hexahydro-4,7-methanobenzo[d]isooxazol-3-yl) phenyl)-3-methylthiourea **6** (5 gm, 0.016 mol.) in EtOH (30 ml) was added ethylbromoacetate (3.2 gm, 0.019 mol.) and DIPEA (3.3 gm, 0.024 mol.), reaction mixture was heated at 80-85 °C for 6 hour. After completion of reaction (TLC check; 1:1 Hexane:EtOAc), reaction mixture cooled to rt and EtOH was removed under vacuum. Water (30 ml) was added to the residue and stirred for 15 min and extracted with EtOAc (3 × 20ml). The organic layer was evaporated to get sticky reddish solid. It was then recrystalised using EtOH to give 3.95 gm pure product 2-((4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanobenzo[d]isooxazol-3-yl) phenyl) imino)-3-methylthiazolidin-4-one **7**.

Yellow solid, (69% yield), Mp: 112-114°C; EI-MS (m/z): 342.05 [M +1], IR (cm⁻¹, KBr): 1726 (C=O), 1631 (C=C), 1612 (C=N) and 617 (C-S-C) cm⁻¹, ¹HNMR (DMSO- d_6 , 400MHz): 1.11-1.15 (m,2H), 1.26-1.43 (m, 2H), 1.45-1.50 (m, 2H), 2.41 (s,1H), 2.46 (s,1H), 3.16 (s,3H), 3.65-3.67 (d, 1H), 4.03 (s,2H), 4.57-4.59 (d, 1H), 7.00-7.02 (d, J=8Hz,2H), 7.68-7.70 (d, J=8Hz,2H)

5-((1H-indol-3-yl) methylene)-2-((4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenyl) imino)-3-methylthiazolidin-4-one (8)

A well stirred solution of 2-((4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanobenzo[d]isooxazol-3-yl) phenyl) imino)-3-methylthiazolidin-4-one **7** (8.5 gm, 0.026 mol.) in 136 ml of EtOH, piperidine (0.64 gm 0.0075 mol.), AcOH (0.47 gm, 0.008mol.) and Indole-3-carboxaldehyde (3.77 gm, 0.026 mol.) was refluxed till (5-7 hrs) the completion of the reaction, monitored by TLC. The reaction mixture was then cooled to rt and solid collected by filtration to give 9.3 gm **8**.

Yellow solid, (78.7% yield), Mp: 180-182°C; EI-MS (m/z) : 469.3 [M+1], IR (cm⁻¹, KBr) : 3309 (N-H), 1689 (C=O), 1641 (C=C), 1593 (C=N) and 609 (C-S-C) cm⁻¹, ¹HNMR (DMSO- d_6 , 400 MHz) : 1.12-1.17 (m, 2H), 1.30-1.51 (m,4H), 2.41 (s,1H), 2.46 (s,1H), 3.16 (s, 3H), 3.67-3.69

(d,1H), 4.58-4.60 (d, 1H), 7.08-7.10 (d, J = 8Hz, 2H), 7.12-7.24 (m, 2H), 7.47-7.49 (d,1H), 7.64 (s,1H), 7.73-7.75 (d, J = 8Hz, 2H), 7.85-7.87 (d, 1H), 8.02 (s,1H), 11.95 (bs,1H,exchangeable with D₂O), ¹³CNMR (DMSO-d6; Cl₃, 100 MHz): 22.60, 27.19, 29.92, 32.38, 43.17, 56.57, 87.50, 110.81, 112.84, 114.34, 118.71, 121.35, 122.22, 123.34, 123.40, 125.68, 127.20, 128.40, 128.78, 136.58, 149.81, 151.47, 156.74, 166.41

General procedure for synthesis of 9a-9l

A solution of 2-((4-(3a,4,5,6,7,7a-hexahydro-4,7-methanobenzo[d]isooxazol-3-yl) phenyl) imino)-3-methylthiazolidin-4-one **8** (0.15 gm, 0.00032 mol.) in DCM (1.5 ml), TEA (0.065 gm, 0.00064 mol.), DMAP (0.004 gm, 0.000032 mol.) and appropriate sulfonyl chloride (0.00034 mol.) was stirred over different periods till the completion of the reaction (monitored by TLC). The reaction mixture was then distilled out to get oil/solid, which then recrystallized using EtOH to get **9a-9l**.

- 2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-3-methyl-5-((1-tosyl-1H-indol-3-yl) methylene) thiazolidin-4-one (9a)
- Yellow solid, (72% yield), Mp: 195-197°C; EI-MS (m/z): 623.6 [M+1], IR (cm⁻¹, KBr): 1707 (C=O), 1639 (C=C), 1612 (C=N), 1373 & 1172 (SO₂) cm⁻¹
- 2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-3-methyl-5-((1-(4-nitrophenylsulfonyl)-1H-indol-3-yl) methylene) thiazolidin-4-one (9b)

Yellow solid, (64% yield), Mp: 213-215°C; EI-MS (m/z): 654.5 [M+1], IR (cm⁻¹, KBr): 1720 (C=O), 1639 (C=C), 1607 (C=N), 1375 & 1174 (SO₂) cm⁻¹

- 2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-3-methyl-5-((1-(methylsulfonyl)-1H-indol-3-yl) methylene) thiazolidin-4-one (9c)
- Yellow solid, (72% yield), Mp: 177-178°C; EI-MS (m/z): 547.3 [M+1], 548.2 [M+2], 549.2 [M+3], IR (cm⁻¹, KBr): 1709 (C=O), 1639 (C=C), 1597 (C=N), 1369, 1172 (SO₂), 609 (C-S-C) cm⁻¹, ¹HNMR (DMSO-d6, 400 MHz): 1.03-1.17 (m, 3H), 1.30-1.50 (m, 4H), 2.44(s, 1H) 3.31 (s,3H), 3.59 (s,3H), 3.69-3.71 (d,1H), 4.59-4.61 (d,1H), 7.12-7.14 (d, J=8Hz,2H), 7.40-7.51 (m,2H), 7.58 (s,1H), 7.75-7.77 (d, J=8Hz,2H), 7.86-7.88 (d,1H), 7.97 (s,1H), 8.03-8.05 (d,1H)
- 2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-5-((1-(4-ethoxyphenylsulfonyl)-1H-indol-3-yl) methylene)-3-methylthiazolidin-4-one (9d)

Yellow solid, (68% yield), Mp: 176-178°C; EI-MS (m/z): 653.6 [M+1], IR (cm⁻¹, KBr): 1708 (C=O), 1631 (C=C), 1610 (C=N).1365 & 1167 (SO₂) cm⁻¹

- 2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-5-((1-(4-fluorophenylsulfonyl)-1H-indol-3-yl) methylene)-3-methylthiazolidin-4-one (9e)
- Yellow solid, (66% yield), Mp: 185-187°C; EI-MS (m/z): 627.35 [M+1], 628.40 [M+2], IR (cm⁻¹, KBr): 1713 (C=O), 1639(C=C), 1597 (C=N), 1369, 1180 (SO₂), 671 (C-S-C) cm⁻¹, ¹HNMR (DMSO-d6, 400 MHz): 1.12-1.15 (d,3H), 1.27-1.29 (d,1H), 1.37-1.48 (m, 3H), 2.42 (d,1H) 3.34 (s,3H), 3.68-3.70 (d,1H), 4.57-4.59 (d,1H), 7.13-7.15 (d, J=8Hz, 2H), 7.35-7.46 (m,4H), 7.76-7.78 (s,3H), 7.87-7.93 (m,3H), 8.13-8.16 (m,2H)
- 2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-5-((1-(4-chlorophenylsulfonyl)-1H-indol-3-yl) methylene)-3-methylthiazolidin-4-one (9f)

Yellow solid, (60% yield), Mp: 194-196°C; EI-MS (m/z): 644.0 [M+1], IR (cm⁻¹, KBr): 1693 (C=O), 1629 (C=C), 1612 (C=N), 1373 & 1166 (SO₂) cm⁻¹

2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-5-((1-(4-bromophenylsulfonyl)-1H-indol-3-yl) methylene)-3-methylthiazolidin-4-one (9g)

Yellow solid, (68% yield), Mp: 189-192°C; EI-MS (m/z): 688.5 [M+1], IR (cm⁻¹, KBr): 1716 (C=O), 1637(C=C), 1608 (C=N), 1367 & 1176 (SO₂) cm⁻¹

2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-5-((1-(4-iodophenylsulfonyl)-1H-indol-3-yl) methylene)-3-methylthiazolidin-4-one (9h)

Yellow solid, (59% yield), Mp: 198-200°C; EI-MS (m/z): 735.5 [M+1], IR (cm⁻¹, KBr): 1688(C=O), 1633 (C=C), 1600 (C=N), 1368 & 1178 (SO₂) cm⁻¹

2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-5-((1-(4-methoxyphenylsulfonyl)-1H-indol-3-yl) methylene)-3-methylthiazolidin-4-one (9i)

Yellow solid, (67% yield), Mp: 173-175°C; EI-MS (m/z): 639.30 [M+1], 640.40 [M+2], 641.40 [M+3], IR (cm⁻¹, KBr): 1709 (C=O), 1639 (C=C), 1597 (C=N), 1369 & 1168 (SO₂), 671 (C-S-C) cm⁻¹, ¹HNMR (DMSO-d6, 400 MHz): 1.12-1.14 (d,2H), 1.27-1.30 (d,1H), 1.37-1.47 (m, 3H), 2.43 (S,2H), 3.34 (s,3H), 3.68-3.70 (d,1H), 3.74 (s,3H), 4.50-4.59 (d,1H), 7.00-7.02 (d, J=8Hz,2H), 7.14-7.16 (d, J=8Hz,2H), 7.33-7.37 (m, 1H), 7.41-7.43 (m, 1H), 7.74-7.78 (m, 3H), 7.88-7.97 (m,5H)

2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-3-methyl-5-((1-(phenylsulfonyl)-1H-indol-3-yl) methylene) thiazolidin-4-one (9j)

Yellow solid, (78% yield), Mp: 180-182°C; EI-MS (m/z): 623.5 [M+1], IR (cm⁻¹, KBr): 1708 (C=O), 1639 (C=C), 1608 (C=N), 1369 & 1172 (SO₂) cm⁻¹

2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-5-((1-(4-ethylphenylsulfonyl)-1H-indol-3-yl) methylene)-3-methylthiazolidin-4-one (9k)

Yellow solid, (72% yield), Mp: 190-192°C; EI-MS (m/z): 637.5 [M+1], IR (cm⁻¹, KBr): 1697 (C=O), 1639 (C=C), 1609 (C=N), 1377 & 1169 (SO₂) cm⁻¹

2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-5-((1-(benzylsulfonyl)-1H-indol-3-yl) methylene)-3-methylthiazolidin-4-one (9l)

Yellow solid, (73% yield), Mp: 188-190°C; EI-MS (m/z): 623.5 [M+1], IR (cm⁻¹, KBr): 1700 (C=O), 1645 (C=C), 1616 (C=N), 1388 & 1170 (SO₂) cm⁻¹

General procedure for synthesis of 10a-10j

A solution of 2-((4-(3a,4,5,6,7,7a-hexahydro-4,7-methanobenzo[d]isooxazol-3-yl) phenyl) imino)-3-methylthiazolidin-4-one **8** (0.15 gm, 0.00032 mol.) in DCM (1.5 ml), TEA (0.065 gm, 0.00064 mol.), DMAP (0.004 gm, 0.000032 mol.) and appropriate acyl/benzoyl chloride (0.00034 mol.) was stirred over different periods till the completion of the reaction (monitored by TLC). The reaction mixture was then distilled out to get oil/solid, which then recrystallized using EtOH to get **10a-10j**.

2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-5-((1-acetyl-1H-indol-3-yl) methylene)-3-methylthiazolidin-4-one (10a)

Yellow solid, (73% yield), Mp: 183-184°C; EI-MS (m/z): 511.3 [M+1], 512.1 [M+2], IR (cm⁻¹, KBr): 1708 (C=O), 1639 (C=C), 1597 (C=N), 655 (C-S-C) cm⁻¹, ¹HNMR (CDCl₃, 400 MHz): 1.21-1.24 (m,2H), 1.55-1.58 (m,1H), 1.59-1.60 (m,3H), 2.57 (s,2H), 2.65 (s,3H) 3.49 (s,3H), 3.68-3.70 (d,1H), 4.65-4.67 (d,1H), 7.06-7.08 (d, J=8Hz,2H), 7.39-7.44 (m,2H), 7.51 (s,1H), 7.74-7.79 (m,3H), 7.99 (s,1H), 8.39-8.41 (d,1H)

2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-3-methyl-5-((1-propionyl-1H-indol-3-yl) methylene) thiazolidin-4-one (10b)

Yellow solid, (76% yield), Mp: 195-197°C; EI-MS (m/z): 525.5 [M+23], IR (cm⁻¹, KBr): 1685 (C=O), 1630 (C=C), 1606 (C=N) cm⁻¹

2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-5-((1-benzoyl-1H-indol-3-yl) methylene)-3-methylthiazolidin-4-one (10c)

Yellow solid, (75% yield), Mp: 172-173°C; EI-MS (m/z): 573.3 [M+1], 574.4 [M+2], IR (cm⁻¹, KBr): 1678 (C=O), 1639 (C=C), 1597 (C=N) cm⁻¹, ¹HNMR (CDCl₃, 400 MHz): 1.23-1.27 (m, 2H), 1.55-1.62 (m, 5H), 2.60 (s,1H), 2.68 (s,1H) 3.46 (s,3H), 3.52-3.54 (d,1H), 4.69-4.71 (d,1H), 7.01-7.03 (d, J=8Hz,2H), 7.26-7.45 (m,3H), 7.50 (s,1H), 7.59-7.61 (m,1H), 7.69-7.80 (m,5H), 7.95 (s,1H), 8.29-8.31 (d,1H)

2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-5-((1-(4-chlorobenzoyl)-1H-indol-3-yl) methylene)-3-methylthiazolidin-4-one (10d)

Yellow solid, (64% yield), Mp: 181-183°C; EI-MS (m/z): 608.0 [M+1], IR (cm⁻¹, KBr): 1712 (C=O), 1639 (C=C), 1605 (C=C) cm⁻¹

2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-5-((1-(4-bromobenzoyl)-1H-indol-3-yl) methylene)-3-methylthiazolidin-4-one (10e)

Yellow solid, (62% yield), Mp: 196-198°C; EI-MS (m/z): 652.4 [M+1], IR (cm⁻¹, KBr): 1709 (C=O), 1658 (C=C), 1606 (C=N) cm⁻¹

2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-5-((1-(4-iodobenzoyl)-1H-indol-3-yl) methylene)-3-methylthiazolidin-4-one (10f)

Yellow solid, (60% yield), Mp: 204-206°C; EI-MS (m/z): 699.1 [M+1], IR (cm⁻¹, KBr): 1710 (C=O), 1632 (C=C), 1601 (C=N) cm⁻¹

2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-5-((1-(4-fluorobenzoyl)-1H-indol-3-yl) methylene)-3-methylthiazolidin-4-one (10g)

Yellow solid, (62% yield), Mp: 197-199°C; EI-MS (m/z): 591.6 [M+1], IR (cm⁻¹, KBr): 1701 (C=O), 1654 (C=C), 1612 (C=N) cm⁻¹

2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-3-methyl-5-((1-(4-nitrobenzoyl)-1H-indol-3-yl) methylene) thiazolidin-4-one (10h)

Yellow solid, (62% yield), Mp: 228-230°C; EI-MS (m/z): 618.5 [M+1], IR (cm⁻¹, KBr): 1725(C=O), 1646 (C=C), 1616 (C=N) cm⁻¹

2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-5-((1-(4-methoxybenzoyl)-1H-indol-3-yl) methylene)-3-methylthiazolidin-4-one (10i)

Yellow solid, (64% yield), Mp: 215-217°C; EI-MS (m/z): 603.5 [M+1], IR (cm⁻¹, KBr): 1701 (C=O), 1631 (C=C), 1597 (C=N) cm⁻¹

2-(4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenylimino)-5-((1-(4-ethoxybenzoyl)-1H-indol-3-yl) methylene)-3-methylthiazolidin-4-one (10j)

Yellow solid, (75% yield), Mp: 226-228°C; EI-MS (m/z) : 617.3 [M+1], IR (cm⁻¹, KBr) : 1712(C=O), 1634(C=C), 1605(C=N) cm⁻¹

Antimicrobial activity

The various sulfonyl, acyl and benzoyl derivatives of Indole-thiazolidin-4-one were tested for their potential to inhibit growth of different bacterial and fungal species at doses of $100 \, \mu \text{g/ml}$ in DMSO as a solvent, against bacterial and fungal cultures. All the compounds were found to have antimicrobial activities against different species of bacteria and fungi in our studies.

Antimicrobial activity of sulfonyl derivatives (9a-9l)

Synthesized compounds **9a-91** were tested to evaluate their antibacterial and antifungal activity. The newly synthesized compounds were found to exhibit very good antibacterial and antifungal activity against different species of bacteria and fungi. From the activity data (**Table 3**) it was observed that compound **9b**, **9e** & **9i** shows good activity against all the tested bacteria and fungi. Among all tested bacteria and fungi, compound **9b** shows very good activity against

Staphylococcus aureus, (inhibition 12 mm, standard shows 12 mm), Bacillus subtillis (inhibition 12 mm, standard shows 12 mm) and against Escherichia coli bacteria (inhibition 11 mm, standard shows 12 mm). Also against Aspergillius Niger fungi (inhibition 9 mm, standard shows 10 mm), against Rhizopus Ostoyae fungi (inhibition 8 mm, standard shows 10 mm). Compound 9e shows very good activity against Staphylococcus aureus, (inhibition 10 mm, standard shows 12 mm) and against Escherichia coli bacteria (inhibition 11 mm, standard shows 12 mm) and against Escherichia coli bacteria (inhibition 11 mm, standard shows 12 mm). Also against Aspergillius Niger fungi (inhibition 8 mm, standard shows 10 mm), against Rhizopus Ostoyae fungi (inhibition 7 mm, standard shows 10 mm). Whereas compound 9i shows good activity against Staphylococcus aureus, (inhibition 9 mm, standard shows 12 mm), Bacillus subtillis (inhibition 10 mm, standard shows 10 mm) and against Escherichia coli bacteria (inhibition 8 mm, standard shows 12 mm). Also against Aspergillius Niger fungi (inhibition 9 mm, standard shows 10 mm), against Rhizopus Ostoyae fungi (inhibition 8 mm, standard shows 10 mm).

Compounds **9a**, **9c**, **9d**, **9f**, **9g**, **9h**, **9j**, **9k & 9l** shows moderate activity against *Staphylococcus aureus* bacteria, *Bacillus subtillis* bacteria and *Escherichia coli* bacteria as well as against *Aspergillius Niger* and *Rhizopus Ostoyae* fungi.

Table 3: Antimicrobial activity of sulfonyl derivatives (9a-9l) of 5-((1H-indol-3-yl) methylene)-2-((4-(3a, 4, 5, 6, 7, 7a-hexahydro-4,7-methanebenzo[d]isooxazol-3-yl) phenyl) imino)-3-methylthiazolidin-4-one.

	Zone of Inhibition (mm)						
Compound Code	Bacteria		Fungi				
	S. A. NCLM No.2602	B. S. NCLM No.2458	E. C. NCLM No.2809	A. N. NCLM No.617	R.O. NCLM No.1299		
9a	7	8	7	8	6		
9b	12	12	11	9	8		
9c	6	6	5	6	5		
9d	8	8	9	8	6		
9e	10	11	11	8	7		
9f	8	7	5	5	4		
9g	7	6	5	5	5		
9h	6	5	5	5	5		
9i	9	10	8	9	8		
9j	7	7	7	7	6		
9k	7	6	7	4	4		
91	6	6	5	6	5		
Standard	12	12	12	10	10		

Antimicrobial activity of acvl & benzovl derivatives (10a-10j):

Synthesized compounds 10a-10j were tested to evaluate their antibacterial and antifungal activity. The newly synthesized compounds were found to exhibit very good antibacterial and antifungal activity against different species of bacteria and fungi. From the activity data (Table 4), it was observed that compound 10h & 10i shows good activity against all the tested bacteria

and fungi. Among all tested bacteria and fungi, compound **10h** shows very good activity against *Staphylococcus aureus*, (inhibition 10 mm, standard shows 12 mm), *Bacillus subtillis* (inhibition 10 mm, standard shows 12 mm) and against *Escherichia coli* bacteria (inhibition 9 mm, standard shows 12 mm). Also against *Aspergillius Niger* fungi (inhibition 8 mm, standard shows 10 mm), against *Rhizopus Ostoyae* fungi (inhibition 8 mm, standard shows 10 mm). Whereas compound **10i** shows very good activity against *Staphylococcus aureus*, (inhibition 9 mm, standard shows 12 mm), *Bacillus subtillis* (inhibition 9 mm, standard shows 12 mm) and against *Escherichia coli* bacteria (inhibition 8 mm, standard shows 12 mm). Also against *Aspergillius Niger* fungi (inhibition 8 mm, standard shows 10 mm), against *Rhizopus Ostoyae* fungi (inhibition 7 mm, standard shows 10 mm).

Compounds 10a, 10b, 10c, 10d, 10e, 10f, 10g & 10j shows moderate activity against *Staphylococcus aureus* bacteria, *Bacillus subtillis* bacteria and *Escherichia coli* bacteria as well as against *Aspergillius Niger* and *Rhizopus Ostoyae* fungi.

Table 4: Antimicrobial activity of acyl and benzoyl derivatives (10a-10j) of 5-((1H-indol-3-yl) methylene)-2-((4-(3a,4,5,6, 7, 7a-hexahydro-4,7-methanebenzo[d]isooxazol-3-yl) phenyl)

imino)-3-methylthiazolidin-4-one.

Compound Code	Zone of Inhibition (mm)						
	Bacteria		Fungi				
	S. A. NCLM No.2602	B. S. NCLM No.2458	E. C. NCLM No.2809	A. N. NCLM No.617	R.O. NCLM No.1299		
10a	6	6	5	6	5		
10b	5	5	5	5	5		
10c	7	7	8	7	6		
10d	6	6	6	5	5		
10e	5	6	4	4	4		
10f	6	5	3	5	5		
10g	8	9	8	8	7		
10h	10	10	9	8	8		
10i	9	9	8	8	7		
10j	7	8	7	6	6		
Standard	12	12	12	10	10		

Conclusion

In this communication all synthesized compounds reported first time and describe the simple route of their synthesis in mild condition with good yield. The present study showed that all the title compounds were exhibiting significant antibacterial and antifungal activities. However, further studies are required to establish the mechanism of action of the title compounds. From the screening data it was found that **9b**, **9e**, **9i**, **10g**, **10h** & **10i** derivative have encouraging antibacterial and antifungal activity, which need to be further investigation to get better antibacterial and antifungal agents. We herein also reported the synthesis of series of novel sulfonyl, acyl and benzoyl derivatives of 5-((1*H*-indol-3-yl) methylene)-2-((4-(3a, 4, 5, 6, 7, 7a-hexahydro-4, 7-methanebenzo[d] isooxazol-3-yl) phenyl) imino)-3-methylthiazolidin-4-one

Acknowledgement

The authors are grateful to Dr. N. V. Kalyankar, Principal, Yeshwant Mahavidyalaya,

Nanded, for providing laboratory facilities, to UGC New Delhi for financial assistance under major research project (F.N. 39-834/2010 (SR)) and Director, IICT, Hyderabad, for providing spectra.

References

- [1] Huisgen, R. Angew. Chem. Int. Ed. **1963**, 2, 565.
- [2] Caramella, P.; Gruenanger, P. In 1, 3-Dipolar Cycloaddition Chemistry, Vol. 1, Padwa, A., Ed.; Wiley Interscience: New York, **1984**; 337.
- [3] Patterson, J. W.; Cheung, P. S.; Ernest, M. J. J. Med. Chem. **1992**, 35, 507.
- [4] Dannhardt, G.; Kiefer, W.; Kramer, G.; Maehrlein, S.; Nowe, U.; Fiebich, B. Eur. J. Med.Chem. **2000**,35, 499.
- [5] Korgaokar, S. S.; Patil, P. H.; Shab, M. T.; Parekh, H. H. Indian J. Pharm. Soc **1996**, 58, 222.
- [6] Nauduri, D.; Reddy, G. B.; Chem. Pharm. Bull. Tokyo **1998**, 46, 1254.
- [7] Kurokawa, U. H.; Masuda, M. Y.; Nishimuura, H. J. Med. Chem., 1979, 22, 180.
- [8] Shivkumar, B.; Nargund, L. V.; G. Indian J. Heterocyclic Chem. 1998, 8, 27.
- [9] Diana, G. D.; Mckinlay, M. A.; Otto, M. J.; Akullian, V.; Oglesby, C. J. Med. Chem. **1985**, 28, 1905
- [10] Adachi, K. H.; Kido, J. R.; Hirose, K. J. Med. Chem., 1967, 10, 411.
- [11] Getal, J. J. Antibiotic. **1975**, 28, 91.
- [12] Rajam, S. A.; Subhash, M. V. K.; Rajanarendar, E.; Indian Bot. Report. 1984, 3, 38.
- [13] Pinto, J. P. D. J. Med. Chem. **2001**, 44, 566.
- [14] Tomilovi, Y. V.; Okonnishnikova, G. P.; Shulishov, E. V.; Nefedov, O. M. Russ. Chem. Bull. **1995**, 44, 2114.
- [15] Klimova, E. I.; Marcos, M.; Klimova, T. B.; Cecilio, A. T.; Ruben, A. T.; Lena, R. R. J. Organomett. Chem. **1999**, 585, 106.
- [16] Umesha, K. B.; Kumar, A.; Rai, K.; Lokanatha, M. Synth. Commun. **2002**, 32, 1841.
- [17] Rai, K.; Lokanatha, M.; Linganna, N.; Hassner, A.; Anjanamurthy, C. Org. Prep. Proc. Int. 1992, 24, 91.
- [18] Keigiel, J.; Poplawaska, M.; Jozwik, J.; Kosior, M.; Jurzak, J. Tetrahedron 1999, 40, 5605.
- [19] Moriya, O.; Takenaka, H.; Iyoda, M.; Urata, Y.; Endo, T. J. Chem. Soc., Perkin Trans. I. **1994**, 413.
- [20] (a) Rai, K.; Lokanatha, M.; Hassner, A. Indian J. Chem. 1997, 36B, 242. (b) Rai, K.; Lokanatha, M.; Hassner, A. Synth. Commun. 1997, 27, 467. (c) Hassner, A.; Rai, K.; Lokanatha, M.; Synthesis 1989, 57. (d) Rai, K.; Lokanatha, M.; Hassner, A. Synth. Commun. 1989, 19, 2799.
- [21] Balachandran, S. Biorg. Med. Chem. Lett. **2009**, 19, 4773.
- [22] (a) Sambhaji P. Vartale, Yogesh D. Pawar and Nilesh K. Halikar. Journal of Pharmacy Research, Vol. 4, Issue 8, Aug **2011**, 2728-2731, (b) Vartale S.P. **Pawar Y.D**. Halikar N.K. and Kalyankar N.D. International Journal of Chemical and Pharmaceutical Sciences, **2011**, June, Vol.2 (2), 50-56
- [23] (a) B. C. Ranu, R. Jana, Eur. J. Org. Chem. **2006**, 3767 (b) H.W.Lee, J.B.Ahn, OPRD, 11 (2), **2007**, 190 -199

Received on June 12, 2012.