1,607 research outputs found
Theory of Tunneling Spectroscopy in a Mn Single-Electron Transistor by Density-Functional Theory Methods
We consider tunneling transport through a Mn molecular magnet using
spin density functional theory. A tractable methodology for constructing
many-body wavefunctions from Kohn-Sham orbitals allows for the determination of
spin-dependent matrix elements for use in transport calculations. The tunneling
conductance at finite bias is characterized by peaks representing transitions
between spin multiplets, separated by an energy on the order of the magnetic
anisotropy. The energy splitting of the spin multiplets and the spatial part of
their many-body wave functions, describing the orbital degrees of freedom of
the excess charge, strongly affect the electronic transport, and can lead to
negative differential conductance.Comment: 4 pages, 3 figures, a revised version with minor change
Inelastic fingerprints of hydrogen contamination in atomic gold wire systems
We present series of first-principles calculations for both pure and hydrogen
contaminated gold wire systems in order to investigate how such impurities can
be detected. We show how a single H atom or a single H2 molecule in an atomic
gold wire will affect forces and Au-Au atom distances under elongation. We
further determine the corresponding evolution of the low-bias conductance as
well as the inelastic contributions from vibrations. Our results indicate that
the conductance of gold wires is only slightly reduced from the conductance
quantum G0=2e^2/h by the presence of a single hydrogen impurity, hence making
it difficult to use the conductance itself to distinguish between various
configurations. On the other hand, our calculations of the inelastic signals
predict significant differences between pure and hydrogen contaminated wires,
and, importantly, between atomic and molecular forms of the impurity. A
detailed characterization of gold wires with a hydrogen impurity should
therefore be possible from the strain dependence of the inelastic signals in
the conductance.Comment: 5 pages, 3 figures, Contribution to ICN+T2006, Basel, Switzerland,
July-August 200
Opportunities and limitations of transition voltage spectroscopy: a theoretical analysis
In molecular charge transport, transition voltage spectroscopy (TVS) holds
the promise that molecular energy levels can be explored at bias voltages lower
than required for resonant tunneling. We investigate the theoretical basis of
this novel tool, using a generic model. In particular, we study the length
dependence of the conducting frontier orbital and of the 'transition voltage'
as a function of length. We show that this dependence is influenced by the
amount of screening of the electrons in the molecule, which determines the
voltage drop to be located at the contacts or across the entire molecule. We
observe that the transition voltage depends significantly on the length, but
that the ratio between the transition voltage and the conducting frontier
orbital is approximately constant only in strongly screening (conjugated)
molecules. Uncertainty about the screening within a molecule thus limits the
predictive power of TVS. We furthermore argue that the relative length
independence of the transition voltage for non-conjugated chains is due to
strong localization of the frontier orbitals on the end groups ensuring binding
of the rods to the metallic contacts. Finally, we investigate the
characteristics of TVS in asymmetric molecular junctions. If a single level
dominates the transport properties, TVS can provide a good estimate for both
the level position and the degree of junction asymmetry. If more levels are
involved the applicability of TVS becomes limited.Comment: 8 pages, 12 figure
The Smallest Molecular Switch
Ab-initio total energy calculations reveal benzene-dithiolate (BDT) molecules
on a gold surface, contacted by a monoatomic gold STM tip to have two classes
of low energy conformations with differing symmetries. Lateral motion of the
tip or excitation of the molecule cause it to change from one conformation
class to the other and to switch between a strongly and a weakly conducting
state. Thus, surprisingly, despite their apparent simplicity these Au/BDT/Au
nanowires are shown to be electrically bi-stable switches, the smallest
two-terminal molecular switches to date. Experiments with a conventional or
novel self-assembled STM are proposed to test these predictions.Comment: 8 pages, 3 figure
A family tree of Markov models in systems biology
Motivated by applications in systems biology, we seek a probabilistic
framework based on Markov processes to represent intracellular processes. We
review the formal relationships between different stochastic models referred to
in the systems biology literature. As part of this review, we present a novel
derivation of the differential Chapman-Kolmogorov equation for a general
multidimensional Markov process made up of both continuous and jump processes.
We start with the definition of a time-derivative for a probability density but
place no restrictions on the probability distribution, in particular, we do not
assume it to be confined to a region that has a surface (on which the
probability is zero). In our derivation, the master equation gives the jump
part of the Markov process while the Fokker-Planck equation gives the
continuous part. We thereby sketch a {}``family tree'' for stochastic models in
systems biology, providing explicit derivations of their formal relationship
and clarifying assumptions involved.Comment: 18 pages, 2 figure
Stochastic Simulations of the Repressilator Circuit
The genetic repressilator circuit consists of three transcription factors, or
repressors, which negatively regulate each other in a cyclic manner. This
circuit was synthetically constructed on plasmids in {\it Escherichia coli} and
was found to exhibit oscillations in the concentrations of the three
repressors. Since the repressors and their binding sites often appear in low
copy numbers, the oscillations are noisy and irregular. Therefore, the
repressilator circuit cannot be fully analyzed using deterministic methods such
as rate-equations. Here we perform stochastic analysis of the repressilator
circuit using the master equation and Monte Carlo simulations. It is found that
fluctuations modify the range of conditions in which oscillations appear as
well as their amplitude and period, compared to the deterministic equations.
The deterministic and stochastic approaches coincide only in the limit in which
all the relevant components, including free proteins, plasmids and bound
proteins, appear in high copy numbers. We also find that subtle features such
as cooperative binding and bound-repressor degradation strongly affect the
existence and properties of the oscillations.Comment: Accepted to PR
Memory and Modularity in Cell-Fate Decision Making
Genetically identical cells sharing an environment can display markedly different phenotypes. It is often unclear how much of this variation derives from chance, external signals, or attempts by individual cells to exert autonomous phenotypic programs. By observing thousands of cells for hundreds of consecutive generations under constant conditions, we dissect the stochastic decision between a solitary, motile state and a chained, sessile state in Bacillus subtilis. The motile state is memoryless, exhibiting no autonomous control over the time spent in the state, whereas chaining is tightly timed. Timing enforces coordination among related cells in the multicellular state. Further, we show that the three-protein regulatory circuit governing the decision is modular, as initiation and maintenance of chaining are genetically separable functions. As stimulation of the same initiating pathway triggers biofilm formation, we argue that autonomous timing allows a trial commitment to multicellularity that external signals could extend
- …