427 research outputs found

    Sistema de controle de horas extras.

    Get PDF
    Editores técnicos: Joseani Mesquita Antunes, Ana Lídia Variani Bonato, Márcia Barrocas Moreira Pimentel

    Evolving Lorentzian wormholes supported by phantom matter with constant state parameters

    Full text link
    In this paper we study the possibility of sustaining an evolving wormhole via exotic matter made out of phantom energy. We show that this exotic source can support the existence of evolving wormhole spacetimes. Explicitly, a family of evolving Lorentzian wormholes conformally related to another family of zero-tidal force static wormhole geometries is found in Einstein gravity. Contrary to the standard wormhole approach, where first a convenient geometry is fixed and then the matter distribution is derived, we follow the conventional approach for finding solutions in theoretical cosmology. We derive an analytical evolving wormhole geometry by supposing that the radial tension (which is negative to the radial pressure) and the pressure measured in the tangential directions have barotropic equations of state with constant state parameters. At spatial infinity this evolving wormhole, supported by this anisotropic matter, is asymptotically flat, and its slices t=t= constant are spaces of constant curvature. During its evolution the shape of the wormhole expands with constant velocity, i.e without acceleration or deceleration, since the scale factor has strictly a linear evolution.Comment: 9 pages, 2 figures, Accepted for publication in Phys. Rev.

    Coulomb's law modification in nonlinear and in noncommutative electrodynamics

    Full text link
    We study the lowest-order modifications of the static potential for Born-Infeld electrodynamics and for the θ\theta-expanded version of the noncommutative U(1) gauge theory, within the framework of the gauge-invariant but path-dependent variables formalism. The calculation shows a long-range correction (1/r51/r^5-type) to the Coulomb potential in Born-Infeld electrodynamics. However, the Coulomb nature of the potential (to order e2e^2) is preserved in noncommutative electrodynamics.Comment: 14 pages, 1 figur

    n-Dimensional FLRW Quantum Cosmology

    Full text link
    We introduce the formalism of quantum cosmology in a Friedmann-Lema\^itre-Robertson-Walker (FLRW) universe of arbitrary dimension filled with a perfect fluid with p=αρp=\alpha\rho equation of state. First we show that the Schutz formalism, developed in four dimensions, can be extended to a n-dimensional universe. We compute the quantum representant of the scale factor a(t)a(t), in the Many-Worlds, as well as, in the de Broglie-Bohm interpretation of quantum mechanics. We show that the singularities, which are still present in the n-dimensional generalization of FLRW universe, are excluded with the introduction of quantum theory. We quantize, via the de Broglie-Bohm interpretation of quantum mechanics, the components of the Riemann curvature tensor in a tetrad basis in a n-dimensional FLRW universe filled with radiation (p=1n1ρp=\frac{1}{n-1}\rho). We show that the quantized version of the Ricci scalar are perfectly regular for all time tt. We also study the behavior of the energy density and pressure and show that the ratio L/L_L/_L tends to the classical value 1/(n1)1/(n-1) only for n=4n=4, showing that n=4n=4 is somewhat privileged among the other dimensions. Besides that, as nn\to\infty, L/L1_L/_L\to 1.Comment: 12 pages, revtex, minor modification

    Quantum singularities in FRW universe revisited

    Full text link
    The components of the Riemann tensor in the tetrad basis are quantized and, through the Einstein equation, we find the local expectation value in the ontological interpretation of quantum mechanics of the energy density and pressure of a perfect fluid with equation of state p=13ρp=\frac{1}{3}\rho in the flat Friedmann-Robertson-Walker quantum cosmological model. The quantum behavior of the equation of state and energy conditions are then studied and it is shown that the later is violated since the singularity is removed with the introduction of quantum cosmology, but in the classical limit both the equation of state and the energy conditions behave as in the classical model. We also calculate the expectation value of the scale factor for several wave packets in the many-worlds interpretation in order to show the independence of the non singular character of the quantum cosmological model with respect to the wave packet representing the wave function of the Universe. It is also shown that, with the introduction of non-normalizable wave packets, solutions of the Wheeler-DeWitt equation, the singular character of the scale factor, can be recovered in the ontological interpretation.Comment: 15 pages, revtex, accepted for publication in PR

    Scattering map for two black holes

    Get PDF
    We study the motion of light in the gravitational field of two Schwarzschild black holes, making the approximation that they are far apart, so that the motion of light rays in the neighborhood of one black hole can be considered to be the result of the action of each black hole separately. Using this approximation, the dynamics is reduced to a 2-dimensional map, which we study both numerically and analytically. The map is found to be chaotic, with a fractal basin boundary separating the possible outcomes of the orbits (escape or falling into one of the black holes). In the limit of large separation distances, the basin boundary becomes a self-similar Cantor set, and we find that the box-counting dimension decays slowly with the separation distance, following a logarithmic decay law.Comment: 20 pages, 5 figures, uses REVTE

    Chaos around a H\'enon-Heiles-inspired exact perturbation of a black hole

    Full text link
    A solution of the Einstein's equations that represents the superposition of a Schwarszchild black hole with both quadrupolar and octopolar terms describing a halo is exhibited. We show that this solution, in the Newtonian limit, is an analog to the well known H\'enon-Heiles potential. The integrability of orbits of test particles moving around a black hole representing the galactic center is studied and bounded zones of chaotic behavior are found.Comment: 7 pages Revte
    corecore