1,072 research outputs found

    Sectoral Shifts, Diversification and Regional Unemployment: Evidence from Local Labour Systems in Italy

    Get PDF
    Using Local Labour Systems (LLSs) data, this work aims at assessing the effects of sectoral shifts and industry specialization patterns on regional unemployment in Italy over the years 2004-2008, when huge worker reallocation caused by changes in the international division of labour occurred. Italy represents an interesting case study because of the high degree of spatial heterogeneity in local labour market performance and the well-known North-South divide. Furthermore, the presence of strongly specialized LLSs (Industrial Districts, IDs) allows us to test whether IDs perform better than highly diversified urban areas thanks to the effect of agglomeration economies, or vice versa. Building on a semiparametric spatial auto-regressive framework, our empirical investigation documents that sectoral shifts and the degree of specialization exert a negative role on unemployment dynamics. By contrast, highly diversified areas turn out to be characterized by better labour market performances.unemployment, sectoral shift, diversification, spatial dependence, nonparametrics

    CVD nano-coating of carbon composites for space materials atomic oxygen shielding

    Get PDF
    The present work analyzes the possibility to employ carbon nanostructures as a basic material to prevent the erosion effects of atomic oxygen suffered by the carbon fiber reinforced polymeric material used in low earth orbit space environment. The application of thin protecting coatings to base materials is a widely used method for preventing the atomic oxygen induced erosion, and thus degradation. The generic purpose is to integrate carbon nanostructures onto carbon composites surface in order to develop the basic substrate of advanced nanocomposite for atomic oxygen protection. The final goal is the characterization of carbon nanostructures-reinforced carbon composites by means of on-ground atomic oxygen simulation facility, with the future objective to assess and optimize the process of carbon-multiscale advanced composites production. With such an aim, a wide investigation on the methane chemical vapor deposition (CVD) over catalyzed carbon fiber-based substrates has been carried out. The as grown nanostructures have been analyzed in terms of morphology, as well as regarding the main features of the resulting growth (yield, purity, homogeneity, coating uniformity, etc.) and the influence of the deposition route operating parameters (catalyst typology, gas flowing rate, growth time/temperature, etc.). A high degree of reproducibility in terms of the relationship between the carbon deposit type/yield and the main process variables (catalyst and protocol) has been thus obtained. Finally, atomic oxygen ground tests have been conducted in order to evaluate the coating process effectiveness. The on-ground test in atomic oxygen environment, with respect to the performances of the reference carbon composites (in terms of total mass loss and atomic oxygen rate of erosion), showed a worsening for the disordered carbon deposit, while an intriguing improvement was achieved by the high-yield carbon nano-filaments deposition

    A new advanced railgun system for debris impact study

    Get PDF
    The growing quantity of debris in Earth orbit poses a danger to users of the orbital environment, such as spacecraft. It also increases the risk that humans or manmade structures could be impacted when objects reenter Earth's atmosphere. During the design of a spacecraft, a requirement may be specified for the surviv-ability of the spacecraft against Meteoroid / Orbital Debris (M/OD) impacts throughout the mission; further-more, the structure of a spacecraft is designed to insure its integrity during the launch and, if it is reusable, during descent, re-entry and landing. In addition, the structure has to provide required stiffness in order to allow for exact positioning of experiments and antennas, and it has to protect the payload against the space environment. In order to decrease the probability of spacecraft failure caused by M/OD, space maneuver is needed to avoid M/OD if the M/OD has dimensions larger than 10cm, but for M/OD with dimensions less than 1cm M/OD shields are needed for spacecrafts. It is therefore necessary to determine the impact-related failure mechanisms and associated ballistic limit equations (BLEs) for typical spacecraft components and subsys-tems. The methods that are used to obtain the ballistic limit equations are numerical simulations and la-borato-ry experiments. In order to perform an high energy ballistic characterization of layered structures, a new ad-vanced electromagnetic accelerator, called railgun, has been assembled and tuned. A railgun is an electrically powered electromagnetic projectile launcher. Such device is made up of a pair of parallel conducting rails, which a sliding metallic armature is accelerated along by the electromagnetic effect (Lorentz force) of a cur-rent that flows down one rail, into the armature and then back along the other rail, thanks to a high power pulse given by a bank of capacitors. A tunable power supplier is used to set the capacitors charging voltage at the desired level: in this way the Rail Gun energy can be tuned as a function of the desired bullet velocity. This facility is able to analyze both low and high velocity impacts. A numerical simulation is also performed by using the Ansys Autodyn code in order to analyze the damage. The experimental results and numerical simulations show that the railgun-device is a good candidate to perform impact testing of materials in the space debris energy range

    Fully Configurable Electromagnetic Wave Absorbers by Using Carbon Nanostructures

    Get PDF
    The configurable electromagnetic wave absorber (CEMA) defines a new method for the full design of layered carbon-based nanocomposites able to quasi-perfectly reproduce any kind of EM reflection coefficient (RC) profile. The method involves three main factors: (a) nanofillers-like carbon nanotube (CNT), carbon nanofiber (CNF), graphene nanoplatelet (GNP), and polyaniline (PANI) in different concentration versus the matrix; (b) the dielectric parameters of the nanoreinforced materials in the microwave range 2–18 GHz; (c) a numerical technique based on particle swarm optimization (PSO) algorithm within the MATLAB code of the EM propagation engine. Output is the layering of the wave absorber, that is, number of layers and material/thickness of each layer and the reflection/transmission simulated profiles. The frequency selective behavior is due to the multilayered composition, thanks to the direct/reflected wave combination tuning at interfaces. The dielectric characterization of the employed nanocomposites is presented in details: these materials constitute the database for the optimization code running toward the multilayer optimal solution. A FEM analysis is further proposed to highlight the EM propagation within the material’s bulk at different frequencies. The mathematical model of layered materials, the PSO objective function used for RC target fitting, and some results are reported in the text

    Some Nutritional, Technological and Environmental Advances in the Use of Enzymes in Meat Products

    Get PDF
    The growing consumer demand for healthier products has stimulated the development of nutritionally enhanced meat products. However, this can result in undesirable sensory consequences to the product, such as texture alterations in low-salt and low-phosphate meat foods. Additionally, in the meat industry, economical aspects have stimulated researchers to use all the animal parts to maximize yields of marketable products. This paper aimed to show some advances in the use of enzymes in meat processing, particularly the application of the proteolytic enzymes transglutaminase and phytases, associated with nutritional, technological, and environmental improvements

    Shortening ventilatory support with a protocol based on daily extubation screening and noninvasive ventilation in selected patients

    Get PDF
    BACKGROUND: Prolonged invasive mechanical ventilation and reintubation are associated with adverse outcomes and increased mortality. Daily screening to identify patients able to breathe without support is recommended to reduce the length of mechanical ventilation. Noninvasive positive-pressure ventilation has been proposed as a technique to shorten the time that patients remain on invasive ventilation. METHODS: We conducted a before-and-after study to evaluate the efficacy of an intervention that combined daily screening with the use of noninvasive ventilation immediately after extubation in selected patients. The population consisted of patients who had been intubated for at least 2 days. RESULTS: The baseline characteristics were similar between the groups. The intervention group had a lower length of invasive ventilation (6 [4;9] vs. 7 [4;11.5] days, p = 0.04) and total (invasive plus noninvasive) ventilator support (7 [4;11] vs. 9 [6;8], p = 0.01). Similar reintubation rates within 72 hours were observed for both groups. In addition, a lower ICU mortality was found in the intervention group (10.8% vs. 24.3%, p = 0.03), with a higher cumulative survival probability at 60 days (p = 0.05). Multivariate analysis showed that the intervention was an independent factor associated with survival (RR: 2.77; CI 1.14-6.65; p = 0.03), whereas the opposite was found for reintubation at 72 hours (RR: 0.27; CI 0.11-0.65; p = 0.01). CONCLUSION: The intervention reduced the length of invasive ventilation and total ventilatory support without increasing the risk of reintubation and was identified as an independent factor associated with survival

    Impact Response of Nanofluid-Reinforced Antiballistic Kevlar Fabrics

    Get PDF
    In this chapter the possibility to increase the resistance upon ballistic impact of typical Kevlar-based materials by means of silica nanofluids is investigated. Nanofluids are commonly known to have non-newtonian behavior, also indicated as shear thickening fluid (STF) property. STFs are very deformable materials in ordinary conditions (flowing like a liquid as long as no force is applied), but they turn into a very rigid solid-like material at high shear rates. The nanofluid optimization, mainly regarding its chemical and thermal stability, as well as the STF/fabric chemical coupling are crucial issues to tackle, in order to suitably exploit the STF property, i.e. to increase the fabric resistance upon impact. The present work summarizes some experimental results obtained on this subject. In particular, different kind of nanofluids realized by including several percentages of silica nanoparticles within polyethylene glycol are analyzed in terms of their morphological and rheological properties. Later on, the treatment with nanofluids of different typologies of Kevlar materials and the test panels manufacturing is described. Finally, the results of the ballistic characterization of the panels is presented and widely discussed. This latter is performed by means of an in-house built electromagnetic Coil Gun, able to explore a relatively large range of bullet velocity (up to 90m/s) with excellent precision and high degree of test reproducibility. The preliminary results obtained in such energy range show that STF impregnated fabrics have better penetration resistance compared to neat Kevlar, without affecting the fabric flexibility and, mainly, without overweighting the whole panel. That indicates that the addition of STFs to conventional ballistic fabrics enhance the material performances, thus suggesting further investigations in order to make such nanoreinforced materials effective for ballistic application

    Improved relationship between left and right ventricular electrical activation after cardiac resynchronization therapy in heart failure patients can be quantified by body surface potential mapping

    Get PDF
    OBJECTIVES: Few studies have evaluated cardiac electrical activation dynamics after cardiac resynchronization therapy. Although this procedure reduces morbidity and mortality in heart failure patients, many approaches attempting to identify the responders have shown that 30% of patients do not attain clinical or functional improvement. This study sought to quantify and characterize the effect of resynchronization therapy on the ventricular electrical activation of patients using body surface potential mapping, a noninvasive tool. METHODS: This retrospective study included 91 resynchronization patients with a mean age of 61 years, left ventricle ejection fraction of 28%, mean QRS duration of 182 ms, and functional class III/IV (78%/22%); the patients underwent 87-lead body surface mapping with the resynchronization device on and off. Thirty-six patients were excluded. Body surface isochronal maps produced 87 maximal/mean global ventricular activation times with three regions identified. The regional activation times for right and left ventricles and their inter-regional right-to-left ventricle gradients were calculated from these results and analyzed. The Mann-Whitney U-test and Kruskall-Wallis test were used for comparisons, with the level of significance set at p≤0.05. RESULTS: During intrinsic rhythms, regional ventricular activation times were significantly different (54.5 ms vs. 95.9 ms in the right and left ventricle regions, respectively). Regarding cardiac resynchronization, the maximal global value was significantly reduced (138 ms to 131 ms), and a downward variation of 19.4% in regional-left and an upward variation of 44.8% in regional-right ventricular activation times resulted in a significantly reduced inter-regional gradient (43.8 ms to 17 ms). CONCLUSIONS: Body surface potential mapping in resynchronization patients yielded electrical ventricular activation times for two cardiac regions with significantly decreased global and regional-left values but significantly increased regional-right values, thus showing an attenuated inter-regional gradient after the cardiac resynchronization therapy
    corecore