3,159 research outputs found

    Algorithms versus architectures for computational chemistry

    Get PDF
    The algorithms employed are computationally intensive and, as a result, increased performance (both algorithmic and architectural) is required to improve accuracy and to treat larger molecular systems. Several benchmark quantum chemistry codes are examined on a variety of architectures. While these codes are only a small portion of a typical quantum chemistry library, they illustrate many of the computationally intensive kernels and data manipulation requirements of some applications. Furthermore, understanding the performance of the existing algorithm on present and proposed supercomputers serves as a guide for future programs and algorithm development. The algorithms investigated are: (1) a sparse symmetric matrix vector product; (2) a four index integral transformation; and (3) the calculation of diatomic two electron Slater integrals. The vectorization strategies are examined for these algorithms for both the Cyber 205 and Cray XMP. In addition, multiprocessor implementations of the algorithms are looked at on the Cray XMP and on the MIT static data flow machine proposed by DENNIS

    Theoretical dissociation energies for ionic molecules

    Get PDF
    Ab initio calculations at the self-consistent-field and singles plus doubles configuration-interaction level are used to determine accurate spectroscopic parameters for most of the alkali and alkaline-earth fluorides, chlorides, oxides, sulfides, hydroxides, and isocyanides. Numerical Hartree-Fock (NHF) calculations are performed on selected systems to ensure that the extended Slater basis sets employed for the diatomic systems are near the Hartree-Fock limit. Extended Gaussian basis sets of at least triple-zeta plus double polarization equality are employed for the triatomic system. With this model, correlation effects are relatively small, but invariably increase the theoretical dissociation energies. The importance of correlating the electrons on both the anion and the metal is discussed. The theoretical dissociation energies are critically compared with the literature to rule out disparate experimental values. Theoretical (sup 2)Pi - (sup 2)Sigma (sup +) energy separations are presented for the alkali oxides and sulfides

    On the electron affinity of the oxygen atom

    Get PDF
    The electron affinity (EA) of oxygen is computed to be 1.287 eV, using 2p electron full configuration-interaction (CI) wave functions expanded in a 6s5p3d2f Slater-type orbital basis. The best complete active space self-consistent field - multireference CI (CASSCF-MRCI) result including only 2p correlation is 1.263 eV. However, inclusion of 2s intrashell and 2s2p intershell correlation increases the computed EA to 1.290 at the CASSCF-MRCI level. At the full CI basis set limit, the 2s contribution to the electron affinity is estimated to be as large as 0.1 eV. This study clearly establishes the synergistic effect between the higher excitations and basis set completeness on the electron affinity when the 2s electrons are correlated

    A Novel Vertebrate Eye Using Both Refractive and Reflective Optics

    Get PDF
    SummarySunlight is attenuated rapidly in the ocean, resulting in little visually useful light reaching deeper than ∼1000 m in even the clearest water [1]. To maximize sensitivity to the relatively brighter downwelling sunlight, to view the silhouette of animals above them, and to increase the binocular overlap of their eyes, many mesopelagic animals have developed upward-pointing tubular eyes [2–4]. However, these sacrifice the ability to detect bioluminescent [5] and reflective objects in other directions. Thus, some mesopelagic fish with tubular eyes extend their visual fields laterally and/or ventrally by lensless ocular diverticula, which are thought to provide unfocused images, allowing only simple detection of objects, with little spatial resolution [2–4]. Here, we show that a medial mirror within the ventrally facing ocular diverticulum of the spookfish, Dolichopteryx longipes, consisting of a multilayer stack derived from a retinal tapetum, is used to reflect light onto a lateral retina. The reflective plates are not orientated parallel to the surface of the mirror. Instead, plate angles change progressively around the mirror, and computer modeling indicates that this provides a well-focused image. This is the first report of an ocular image being formed in a vertebrate eye by a mirror

    Periodic table of 3d-metal dimers and their ions

    Get PDF
    The ground states of the mixed 3d-metal dimers TiV, TiCr, TiMn, TiFe, TiCo, TiNi, TiCu, TiZn, VCr, VMn, VFe, VCo, VNi, VCu, VZn, CrMn, CrFe, CrCo, CrNi, CrCu, CrZn, MnFe, MnCo, MnNi, MnCu, MnZn, FeCo, FeNi, FeCu, FeZn, CoNi, CoCu, CoZn, NiCu, NiZn, and CuZn along with their singly negatively and positively charged ions are assigned based on the results of computations using density functional theory with generalized gradient approximation for the exchange-correlation functional. Except for TiCo and CrMn, our assignment agrees with experiment. Computed spectroscopic constants (re,ωe,Do) are in fair agreement with experiment. The ground-state spin multiplicities of all the ions are found to differ from the spin multiplicities of the corresponding neutral parents by ±1. Except for TiV, MnFe, and MnCu, the number of unpaired electrons, N, in a neutral ground-state dimer is either N1+N2 or |N1−N2|,where N1 and N2 are the numbers of unpaired 3d electrons in the 3dn4s1 occupation of the constituent atoms. Combining the present and previous results obtained at the same level of theory for homonuclear [Gutsev and Bauschlicher, J. Phys. Chem. A 107, 4755 (2003)] 3d-metal and ScX (X=Ti–Zn) dimers [Gutsev, Bauschlicher, and Andrews, in Theoretical Prospects of Negative Ions, edited by J. Kalcher (Research Signpost, Trivandrum, 2002), pp. 43–60] allows one to construct “periodic” tables of all 3d-metal dimers along with their singly charged ions

    A Search for Isolated Microwave Pulses from the Perseus Cluster of Galaxies

    Get PDF
    The paper describes a search for prompt microwave emissions from supernovae in the central region of the Perseus cluster of galaxies, using a coincidence technique involving five tracking radiometers located at widely spaced sites. No coincidences were found between January and December, 1973, and no supernovae were reported during this period from the optical surveys, in that region of sky

    Finite temperature phase diagram of a polarised Fermi condensate

    Full text link
    The two-component Fermi gas is the simplest fermion system displaying superfluidity, and as such finds applications ranging from the theory of superconductivity to QCD. Ultracold atomic gases provide an exceptionally clean realization of this system, where the interatomic interaction and the atom species population are both independent, tuneable parameters. This allows one to investigate the Fermi gas with imbalanced spin populations, which had previously been experimentally elusive, and this prospect has stimulated much theoretical activity. Here we show that the finite temperature phase diagram contains a region of phase separation between the superfluid and normal states that touches the boundary of second-order superfluid transitions at a tricritical point, reminiscent of the phase diagram of 3^3He-4^4He mixtures. A variation of interaction strength then results in a line of tricritical points that terminates at zero temperature on the molecular Bose-Einstein condensate (BEC) side. On this basis, we argue that tricritical points will play an important role in the recent experiments on polarised atomic Fermi gases.Comment: 6 pages, 4 figures. Manuscript extended and figures modified. For final version, see Nature Physic

    Linear modeling of possible mechanisms for parkinson tremor generation

    Get PDF
    The power of Parkinson tremor is expressed in terms of possibly changed frequency response functions between relevant variables in the neuromuscular system. The derivation starts out from a linear loopless equivalent model of mechanisms for general tremor generation. Hypothetical changes in this model from the substrate of the disease are indicated, and possible ones are inferred from literature about experiments on patients. The result indicates that in these patients tremor appears to have been generated in loops, which did not include the brain area which in surgery usually is inactivated. For some patients in the literature, these loops could involve muscle length receptors, the static sensitivity of which may have been enlarged by pathological brain activity
    corecore