231 research outputs found

    ~1400-nm continuous-wave diamond Raman laser intracavity-pumped by an InGaAs semiconductor disk laser

    Get PDF
    We present a ~1400nm-emitting diamond Raman laser intracavity-pumped by an ~1180nm semiconductor disk laser. We measured a maximum output power of 2.3 W at ~1400nm with an output coupling of 3.5%. The Raman laser was tunable from 1373 to 1415nm using a 4-mm-thick birefringent filter

    A framework to evaluate land degradation and restoration responses for improved planning and decision-making.

    Get PDF
    Made available in DSpace on 2020-05-14T20:20:36Z (GMT). No. of bitstreams: 1 A-framework-to-evaluate-land-degradation-and-restoration-responses-for-improved-planning-and-decision-making.pdf: 3147852 bytes, checksum: e97d8b89271bd75dfcdff4bd682b112d (MD5) Previous issue date: 2020bitstream/item/212992/1/A-framework-to-evaluate-land-degradation-and-restoration-responses-for-improved-planning-and-decision-making.pd

    The Introduction of Historical and Cultural Values in the Sustainable Management of European Forests

    Get PDF
    Document produced for the Ministerial Conference on the Protection of Forest in Europe by Mauro Agnoletti, Steven Anderson, Elisabeth Johann, Mart Kulvik, Andrey Kushlin, Peter Mayer, Cristina Montiel Molina, John Parrotta, Ian D. Rotherham, Eirini Saratsi</jats:p

    Small extracellular vesicles released from germinated kiwi pollen (pollensomes) present characteristics similar to mammalian exosomes and carry a plant homolog of ALIX

    Get PDF
    Introduction: In the last decade, it has been discovered that allergen-bearing extracellular nanovesicles, termed “pollensomes”, are released by pollen during germination. These extracellular vesicles (EVs) may play an important role in pollen-pistil interaction during fertilization, stabilizing the secreted bioactive molecules and allowing long-distance signaling. However, the molecular composition and the biological role of these EVs are still unclear. The present study had two main aims: (I) to clarify whether pollen germination is needed to release pollensomes, or if they can be secreted also in high humidity conditions; and (II) to investigate the molecular features of pollensomes following the most recent guidelines for EVs isolation and identification. Methods: To do so, pollensomes were isolated from hydrated and germinated kiwi (Actinidia chinensis Planch.) pollen, and characterized using imaging techniques, immunoblotting, and proteomics. Results: These analyses revealed that only germinated kiwi pollen released detectable concentrations of nanoparticles compatible with small EVs for shape and protein content. Moreover, a plant homolog of ALIX, which is a well-recognized and accepted marker of small EVs and exosomes in mammals, was found in pollensomes. Discussion: The presence of this protein, along with other proteins involved in endocytosis, is consistent with the hypothesis that pollensomes could comprehend a prominent subpopulation of plant exosome-like vesicles

    Small extracellular vesicles released from germinated kiwi pollen (pollensomes) present characteristics similar to mammalian exosomes and carry a plant homolog of ALIX

    Get PDF
    IntroductionIn the last decade, it has been discovered that allergen-bearing extracellular nanovesicles, termed “pollensomes”, are released by pollen during germination. These extracellular vesicles (EVs) may play an important role in pollen-pistil interaction during fertilization, stabilizing the secreted bioactive molecules and allowing long-distance signaling. However, the molecular composition and the biological role of these EVs are still unclear. The present study had two main aims: (I) to clarify whether pollen germination is needed to release pollensomes, or if they can be secreted also in high humidity conditions; and (II) to investigate the molecular features of pollensomes following the most recent guidelines for EVs isolation and identification.MethodsTo do so, pollensomes were isolated from hydrated and germinated kiwi (Actinidia chinensis Planch.) pollen, and characterized using imaging techniques, immunoblotting, and proteomics.ResultsThese analyses revealed that only germinated kiwi pollen released detectable concentrations of nanoparticles compatible with small EVs for shape and protein content. Moreover, a plant homolog of ALIX, which is a well-recognized and accepted marker of small EVs and exosomes in mammals, was found in pollensomes.DiscussionThe presence of this protein, along with other proteins involved in endocytosis, is consistent with the hypothesis that pollensomes could comprehend a prominent subpopulation of plant exosome-like vesicles

    Putting the pieces together: Integration for forest landscape restoration implementation

    Get PDF
    © 2019 John Wiley & Sons, Ltd. The concept of forest landscape restoration (FLR) is being widely adopted around the globe by governmental, non-governmental agencies, and the private sector, all of whom see FLR as an approach that contributes to multiple global sustainability goals. Originally, FLR was designed with a clearly integrative dimension across sectors, stakeholders, space and time, and in particular across the natural and social sciences. Yet, in practice, this integration remains a challenge in many FLR efforts. Reflecting this lack of integration are the continued narrow sectoral and disciplinary approaches taken by forest restoration projects, often leading to marginalisation of the most vulnerable populations, including through land dispossessions. This article aims to assess what lessons can be learned from other associated fields of practice for FLR implementation. To do this, 35 scientists came together to review the key literature on these concepts to suggest relevant lessons and guidance for FLR. We explored the following large-scale land use frameworks or approaches: land sparing/land sharing, the landscape approach, agroecology, and socio-ecological systems. Also, to explore enabling conditions to promote integrated decision making, we reviewed the literature on understanding stakeholders and their motivations, tenure and property rights, polycentric governance, and integration of traditional and Western knowledge. We propose lessons and guidance for practitioners and policymakers on ways to improve integration in FLR planning and implementation. Our findings highlight the need for a change in decision-making processes for FLR, better understanding of stakeholder motivations and objectives for FLR, and balancing planning with flexibility to enhance social–ecological resilience.The Frank Jackson Foundatio

    Interplay of cell-cell contacts and RhoA/MRTF-A signaling regulates cardiomyocyte identity.

    Get PDF
    Cell-cell and cell-matrix interactions guide organ development and homeostasis by controlling lineage specification and maintenance, but the underlying molecular principles are largely unknown. Here, we show that in human developing cardiomyocytes cell-cell contacts at the intercalated disk connect to remodeling of the actin cytoskeleton by regulating the RhoA-ROCK signaling to maintain an active MRTF/SRF transcriptional program essential for cardiomyocyte identity. Genetic perturbation of this mechanosensory pathway activates an ectopic fat gene program during cardiomyocyte differentiation, which ultimately primes the cells to switch to the brown/beige adipocyte lineage in response to adipogenesis-inducing signals. We also demonstrate by in vivo fate mapping and clonal analysis of cardiac progenitors that cardiac fat and a subset of cardiac muscle arise from a common precursor expressing Isl1 and Wt1 during heart development, suggesting related mechanisms of determination between the two lineages
    corecore