94 research outputs found
Study of three-nucleon dynamics in the dp breakup collisions using the Wasa detector
An experiment to investigate the ^{1}H(d,pp)n breakup reaction using a deuteron beam of 300, 340, 380 and 400 MeV and the WASA detector has been performed at the Cooler Synchrotron COSY-Jülich. As a first step, the data collected at the beam energy of 340 MeV are analysed, with a focus on the proton–proton coincidences registered in the Forward Detector. Elastically scattered deuterons are used for precise determination of the luminosity. The main steps of the analysis, including energy calibration, particle identification (PID) and efficiency studies, and their impact on the final accuracy of the result, are discussed
Study of three-nucleon dynamics in the dp breakup collisions using the Wasa detector
An experiment to investigate the ^{1}H(d,pp)n breakup reaction using a deuteron beam of 300, 340, 380 and 400 MeV and the WASA detector has been performed at the Cooler Synchrotron COSY-Jülich. As a first step, the data collected at the beam energy of 340 MeV are analysed, with a focus on the proton–proton coincidences registered in the Forward Detector. Elastically scattered deuterons are used for precise determination of the luminosity. The main steps of the analysis, including energy calibration, particle identification (PID) and efficiency studies, and their impact on the final accuracy of the result, are discussed
Invariant coordinates in breakup reactions : three nucleon force effects
Systematic experimental studies of few-nucleon systems expose various dynamical ingredients which play an important role in correct description of observables, such as three-nucleon force, Coulomb force and relativistic effects. A large set of existing experimental data for 1H(d, pp) n reaction allows for systematic investigations of these dynamical effects, which vary with energy and appear with different strength in certain observables and phase space regions. Moreover, systematic comparisons with exact theoretical calculations, done in variables related to the system dynamics in a possibly direct ways is a very important tool to verify and improve the existing description of the nucleon interaction. Examples of experimental data for a breakup reaction, transformed to the variables based on Lorentz-invariants are compared with modern theoretical calculations
Study of three-nucleon dynamics in the dp breakup collisions using the WASA detector
An experiment to investigate the 1H(d; pp)n breakup reaction using
a deuteron beam of 300, 340, 380 and 400 MeV and the WASA detector
has been performed at the Cooler Synchrotron COSY-Jülich. As a first
step, the data collected at the beam energy of 340MeV are analysed, with a
focus on the proton–proton coincidences registered in the Forward Detector.
Elastically scattered deuterons are used for precise determination of the
luminosity. The main steps of the analysis, including energy calibration,
particle identification (PID) and efficiency studies, and their impact on the
final accuracy of the result, are discussed
Dynamics of three-nucleon system studied in deuteron-proton breakup experiments : new set of invariant coordinates
This article belongs to the Topical Collection "30th anniversary of Few-Body Systems". This work was partially supported by Polish National Science Center from Grant DEC-2012/05/B/ST2/02556 and by the European Commission within the Seventh Framework Programme through IA-ENSAR (Contract No. RII3-CT-2010-262010).Systems composed of three nucleons have been a subject of precise experimental studies for many years. Recently, the database of observables for the deuteron breakup in collision with protons has been significantly extended at intermediate energies. In this region the comparison with exact theoretical calculations is possible, while the sensitivity to various aspects of the interaction, in particular to the subtle effects of the dynamics beyond the pairwise nucleon–nucleon force, is significant. The Coulomb interaction and relativistic effects show also their influence on the observables of the breakup reaction. All these effects vary with energy and appear with different strength in certain observables and phase-space regions, which calls for systematic investigations of a possibly rich set of observables determined in a wide range of energies. Moreover, a systematic comparison with theoretical predictions performed in coordinates related to the system dynamics in a possibly direct way is of importance. The examples of existing experimental data for the breakup reaction are briefly presented and the amenability of a set of invariant coordinates for that type of analysis is discussed.NCN, European Commission within the Seventh Framework Programm
Deuteron-deuteron collision at 160 MeV
The experiment was carried out using BINA detector at KVI in Groningen. For
the first time an extensive data analysis of the data collected in back part of
the detector is presented, where a clusterization method is utilized for
angular and energy information. We also present differential cross-sections for
the (dddpn) breakup reaction within \textit{dp} quasi-free
scattering limit and their comparison with first calculations based on Single
Scattering Approximation (SSA) approach.Comment: 6 pages, 4 figures, presented at Jagiellonian Symposium 2015 in
Krakow, PhD wor
Differential Cross Section for Proton Induced Deuteron Breakup at 108 MeV
The differential cross sections for the proton-deuteron breakup reaction have been measured for more than 200 angular configurations of outgoing protons in the range of polar angles from 13 to 27 degrees with a proton beam at 108 MeV. The paper presents the experimental results of the selected configurations, which are compared to state-of-the-art theoretical calculations. In some regions of the phase space, a strong influence of the Coulomb interaction is observed.</p
Simulation of Star configurations in the BINA detector
Star Anomaly is one of the most intriguing and unsolved discrepancies
between theoretical calculations and experimental data observed in the domain
of few-nucleon systems at low energies. Previous and upcoming measurements
of the breakup reaction with the use of the BINA detector enable
systematic studies of the Star configurations at intermediate energies. A
dedicated simulation was developed to study feasibility of registering such
events with the required accuracy and to support the future data analysis.
An additional rotation angle has been introduced to parametrise the Star
configurations. First results concerning the acceptance of certain segments
of BINA for registering the Star configurations are presented
Proton Radiographs Using Position-Sensitive Silicon Detectors and High-Resolution Scintillators
7 pags., 11 figs., 1 tab.Proton therapy is a cancer treatment technique currently in growth since it offers advantages with respect to conventional X-ray and ¿ -ray radiotherapy. In particular, better control of the dose deposition allowing to reach higher conformity in the treatments causing less secondary effects. However, in order to take full advantage of its potential, improvements in treatment planning and dose verification are required. A new prototype of proton computed tomography scanner is proposed to design more accurate and precise treatment plans for proton therapy. Our prototype is formed by double-sided silicon strip detectors and scintillators of LaBr3(Ce) with high energy resolution and fast response. Here, the results obtained from an experiment performed using a 100-MeV proton beam are presented. Proton radiographs of polymethyl methacrylate (PMMA) samples of 50-mm thickness with spatial patterns in aluminum were taken. Their properties were studied, including reproduction of the dimensions, spatial resolution, and sensitivity to different materials. Structures of up to 2 mm are well resolved and the sensitivity of the system was enough to distinguish the thicknesses of 10 mm of aluminum or PMMA. The spatial resolution of the images was 0.3 line pairs per mm (MTF-10%). This constitutes the first step to validate the device as a proton radiography scanner.This work has been supported by the PRONTO-CM
B2017/BMD-3888 project funded by Comunidad de Madrid
(Spain). The research leading to these results has received
funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement no. 654002
(ENSAR2) and grant agreement No [730983] (INSPIRE).
This work has been partly supported by the Spanish Funding
Agency for Research (AEI) through the PID2019-104390GBI00 and PID2019-104714GB-C21 projects. A.N. Nerio acknowledges the fundings from the Erasmus Mundus Joint
Master Degree on Nuclear Physics co-funded by the Erasmus+Programme of the European Union
Proton radiographs using position-sensitive silicon detectors and high-resolution scintillators
Proton therapy is a cancer treatment technique currently in growth worldwide.
It offers advantages with respect to conventional X-ray and -ray
radiotherapy, in particular, a better control of the dose deposition allowing
to reach a higher conformity in the treatments. Therefore, it causes less
damage to the surrounding healthy tissue and less secondary effects. However,
in order to take full advantage of its potential, improvements in treatment
planning and dose verification are required. A new prototype of proton Computed
Tomography scanner is proposed to design more accurate and precise treatment
plans for proton therapy. Here, results obtained from an experiment performed
using a 100-MeV proton beam at the CCB facility in Krakow (Poland) are
presented. Proton radiographs of PMMA samples of 50-mm thickness with spatial
patterns in aluminum were taken. Their properties were studied, including
reproduction of the dimensions, spatial resolution and sensitivity to different
materials. They demonstrate the capabilities of the system to produce images
with protons. Structures of up to 2 mm are nicely resolved and the sensitivity
of the system was enough to distinguish thicknesses of 10 mm of aluminum or
PMMA. This constitutes a first step to validate the device as a proton
radiography scanner previous to the future tests as a proton CT scanner.Comment: 7 pages, 11 figures, submitted to IEEE TNS ANIMMA 2021 Conference
Proceeding
- …