94 research outputs found

    Study of three-nucleon dynamics in the dp breakup collisions using the Wasa detector

    Get PDF
    An experiment to investigate the ^{1}H(d,pp)n breakup reaction using a deuteron beam of 300, 340, 380 and 400 MeV and the WASA detector has been performed at the Cooler Synchrotron COSY-Jülich. As a first step, the data collected at the beam energy of 340 MeV are analysed, with a focus on the proton–proton coincidences registered in the Forward Detector. Elastically scattered deuterons are used for precise determination of the luminosity. The main steps of the analysis, including energy calibration, particle identification (PID) and efficiency studies, and their impact on the final accuracy of the result, are discussed

    Study of three-nucleon dynamics in the dp breakup collisions using the Wasa detector

    Get PDF
    An experiment to investigate the ^{1}H(d,pp)n breakup reaction using a deuteron beam of 300, 340, 380 and 400 MeV and the WASA detector has been performed at the Cooler Synchrotron COSY-Jülich. As a first step, the data collected at the beam energy of 340 MeV are analysed, with a focus on the proton–proton coincidences registered in the Forward Detector. Elastically scattered deuterons are used for precise determination of the luminosity. The main steps of the analysis, including energy calibration, particle identification (PID) and efficiency studies, and their impact on the final accuracy of the result, are discussed

    Invariant coordinates in breakup reactions : three nucleon force effects

    Get PDF
    Systematic experimental studies of few-nucleon systems expose various dynamical ingredients which play an important role in correct description of observables, such as three-nucleon force, Coulomb force and relativistic effects. A large set of existing experimental data for 1H(d, pp) n reaction allows for systematic investigations of these dynamical effects, which vary with energy and appear with different strength in certain observables and phase space regions. Moreover, systematic comparisons with exact theoretical calculations, done in variables related to the system dynamics in a possibly direct ways is a very important tool to verify and improve the existing description of the nucleon interaction. Examples of experimental data for a breakup reaction, transformed to the variables based on Lorentz-invariants are compared with modern theoretical calculations

    Study of three-nucleon dynamics in the dp breakup collisions using the WASA detector

    Get PDF
    An experiment to investigate the 1H(d; pp)n breakup reaction using a deuteron beam of 300, 340, 380 and 400 MeV and the WASA detector has been performed at the Cooler Synchrotron COSY-Jülich. As a first step, the data collected at the beam energy of 340MeV are analysed, with a focus on the proton–proton coincidences registered in the Forward Detector. Elastically scattered deuterons are used for precise determination of the luminosity. The main steps of the analysis, including energy calibration, particle identification (PID) and efficiency studies, and their impact on the final accuracy of the result, are discussed

    Dynamics of three-nucleon system studied in deuteron-proton breakup experiments : new set of invariant coordinates

    Get PDF
    This article belongs to the Topical Collection "30th anniversary of Few-Body Systems". This work was partially supported by Polish National Science Center from Grant DEC-2012/05/B/ST2/02556 and by the European Commission within the Seventh Framework Programme through IA-ENSAR (Contract No. RII3-CT-2010-262010).Systems composed of three nucleons have been a subject of precise experimental studies for many years. Recently, the database of observables for the deuteron breakup in collision with protons has been significantly extended at intermediate energies. In this region the comparison with exact theoretical calculations is possible, while the sensitivity to various aspects of the interaction, in particular to the subtle effects of the dynamics beyond the pairwise nucleon–nucleon force, is significant. The Coulomb interaction and relativistic effects show also their influence on the observables of the breakup reaction. All these effects vary with energy and appear with different strength in certain observables and phase-space regions, which calls for systematic investigations of a possibly rich set of observables determined in a wide range of energies. Moreover, a systematic comparison with theoretical predictions performed in coordinates related to the system dynamics in a possibly direct way is of importance. The examples of existing experimental data for the breakup reaction are briefly presented and the amenability of a set of invariant coordinates for that type of analysis is discussed.NCN, European Commission within the Seventh Framework Programm

    Deuteron-deuteron collision at 160 MeV

    Get PDF
    The experiment was carried out using BINA detector at KVI in Groningen. For the first time an extensive data analysis of the data collected in back part of the detector is presented, where a clusterization method is utilized for angular and energy information. We also present differential cross-sections for the (dd\rightarrowdpn) breakup reaction within \textit{dp} quasi-free scattering limit and their comparison with first calculations based on Single Scattering Approximation (SSA) approach.Comment: 6 pages, 4 figures, presented at Jagiellonian Symposium 2015 in Krakow, PhD wor

    Differential Cross Section for Proton Induced Deuteron Breakup at 108 MeV

    Get PDF
    The differential cross sections for the proton-deuteron breakup reaction have been measured for more than 200 angular configurations of outgoing protons in the range of polar angles from 13 to 27 degrees with a proton beam at 108 MeV. The paper presents the experimental results of the selected configurations, which are compared to state-of-the-art theoretical calculations. In some regions of the phase space, a strong influence of the Coulomb interaction is observed.</p

    Simulation of Star configurations in the BINA detector

    Get PDF
    Star Anomaly is one of the most intriguing and unsolved discrepancies between theoretical calculations and experimental data observed in the domain of few-nucleon systems at low energies. Previous and upcoming measurements of the breakup reaction with the use of the BINA detector enable systematic studies of the Star configurations at intermediate energies. A dedicated simulation was developed to study feasibility of registering such events with the required accuracy and to support the future data analysis. An additional rotation angle has been introduced to parametrise the Star configurations. First results concerning the acceptance of certain segments of BINA for registering the Star configurations are presented

    Proton Radiographs Using Position-Sensitive Silicon Detectors and High-Resolution Scintillators

    Get PDF
    7 pags., 11 figs., 1 tab.Proton therapy is a cancer treatment technique currently in growth since it offers advantages with respect to conventional X-ray and ¿ -ray radiotherapy. In particular, better control of the dose deposition allowing to reach higher conformity in the treatments causing less secondary effects. However, in order to take full advantage of its potential, improvements in treatment planning and dose verification are required. A new prototype of proton computed tomography scanner is proposed to design more accurate and precise treatment plans for proton therapy. Our prototype is formed by double-sided silicon strip detectors and scintillators of LaBr3(Ce) with high energy resolution and fast response. Here, the results obtained from an experiment performed using a 100-MeV proton beam are presented. Proton radiographs of polymethyl methacrylate (PMMA) samples of 50-mm thickness with spatial patterns in aluminum were taken. Their properties were studied, including reproduction of the dimensions, spatial resolution, and sensitivity to different materials. Structures of up to 2 mm are well resolved and the sensitivity of the system was enough to distinguish the thicknesses of 10 mm of aluminum or PMMA. The spatial resolution of the images was 0.3 line pairs per mm (MTF-10%). This constitutes the first step to validate the device as a proton radiography scanner.This work has been supported by the PRONTO-CM B2017/BMD-3888 project funded by Comunidad de Madrid (Spain). The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 654002 (ENSAR2) and grant agreement No [730983] (INSPIRE). This work has been partly supported by the Spanish Funding Agency for Research (AEI) through the PID2019-104390GBI00 and PID2019-104714GB-C21 projects. A.N. Nerio acknowledges the fundings from the Erasmus Mundus Joint Master Degree on Nuclear Physics co-funded by the Erasmus+Programme of the European Union

    Proton radiographs using position-sensitive silicon detectors and high-resolution scintillators

    Full text link
    Proton therapy is a cancer treatment technique currently in growth worldwide. It offers advantages with respect to conventional X-ray and γ\gamma-ray radiotherapy, in particular, a better control of the dose deposition allowing to reach a higher conformity in the treatments. Therefore, it causes less damage to the surrounding healthy tissue and less secondary effects. However, in order to take full advantage of its potential, improvements in treatment planning and dose verification are required. A new prototype of proton Computed Tomography scanner is proposed to design more accurate and precise treatment plans for proton therapy. Here, results obtained from an experiment performed using a 100-MeV proton beam at the CCB facility in Krakow (Poland) are presented. Proton radiographs of PMMA samples of 50-mm thickness with spatial patterns in aluminum were taken. Their properties were studied, including reproduction of the dimensions, spatial resolution and sensitivity to different materials. They demonstrate the capabilities of the system to produce images with protons. Structures of up to 2 mm are nicely resolved and the sensitivity of the system was enough to distinguish thicknesses of 10 mm of aluminum or PMMA. This constitutes a first step to validate the device as a proton radiography scanner previous to the future tests as a proton CT scanner.Comment: 7 pages, 11 figures, submitted to IEEE TNS ANIMMA 2021 Conference Proceeding
    corecore