93,298 research outputs found

    Theoretical spin-wave dispersions in the antiferromagnetic phase AF1 of MnWO4_4 based on the polar atomistic model in P2

    Full text link
    The spin wave dispersions of the low temperature antiferromagnetic phase (AF1) MnWO4_4 have been numerically calculated based on the recently reported non-collinear spin configuration with two different canting angles. A Heisenberg model with competing magnetic exchange couplings and single-ion anisotropy terms could properly describe the spin wave excitations, including the newly observed low-lying energy excitation mode ω2\omega_2=0.45 meV appearing at the magnetic zone centre. The spin wave dispersion and intensities are highly sensitive to two differently aligned spin-canting sublattices in the AF1 model. Thus this study reinsures the otherwise hardly provable hidden polar character in MnWO4_4.Comment: 7 pages, 5 figure

    Entrainment transition in populations of random frequency oscillators

    Full text link
    The entrainment transition of coupled random frequency oscillators is revisited. The Kuramoto model (global coupling) is shown to exhibit unusual sample-dependent finite size effects leading to a correlation size exponent νˉ=5/2\bar\nu=5/2. Simulations of locally coupled oscillators in dd-dimensions reveal two types of frequency entrainment: mean-field behavior at d>4d>4, and aggregation of compact synchronized domains in three and four dimensions. In the latter case, scaling arguments yield a correlation length exponent ν=2/(d2)\nu=2/(d-2), in good agreement with numerical results.Comment: published versio

    Principal Component Analysis of Cavity Beam Position Monitor Signals

    Full text link
    Model-independent analysis (MIA) methods are generally useful for analysing complex systems in which relationships between the observables are non-trivial and noise is present. Principle Component Analysis (PCA) is one of MIA methods allowing to isolate components in the input data graded to their contribution to the variability of the data. In this publication we show how the PCA can be applied to digitised signals obtained from a cavity beam position monitor (CBPM) system on the example of a 3-cavity test system installed at the Accelerator Test Facility 2 (ATF2) at KEK in Japan. We demonstrate that the PCA based method can be used to extract beam position information, and matches conventional techniques in terms of performance, while requiring considerably less settings and data for calibration

    Erratum: Dirichlet Forms and Dirichlet Operators for Infinite Particle Systems: Essential Self-adjointness

    Full text link
    We reprove the essential self-adjointness of the Dirichlet operators of Dirchlet forms for infinite particle systems with superstable and sub-exponentially decreasing interactions.Comment: This is an erratum to the work appeared in J. Math. Phys. 39(12), 6509-6536 (1998

    The quantization of the chiral Schwinger model based on the BFT-BFV formalism II

    Get PDF
    We apply an improved version of Batalin-Fradkin-Tyutin (BFT) Hamiltonian method to the a=1 chiral Schwinger Model, which is much more nontrivial than the a>1.one.Furthermore,throughthepathintegralquantization,wenewlyresolvetheproblemofthenontrivial one. Furthermore, through the path integral quantization, we newly resolve the problem of the non-trivial \deltafunctionaswellasthatoftheunwantedFourierparameter function as well as that of the unwanted Fourier parameter \xi$ in the measure. As a result, we explicitly obtain the fully gauge invariant partition function, which includes a new type of Wess-Zumino (WZ) term irrelevant to the gauge symmetry as well as usual WZ action.Comment: 17 pages, To be published in J. Phys.
    corecore