276 research outputs found
Exploring long-term electrification pathway dynamics: a case study of Ethiopia
The Open Source Spatial Electrification Tool (OnSSET) is extended to provide a long-term geospatial electrification analysis of Ethiopia, focusing on the role of grid- and off-grid technologies to increase residential electricity access under different scenarios. Furthermore, the model explores issues of compatibility between the electricity supply technologies over time. Six potential scenarios towards universal access to electricity in the country are examined based on three pathways; the Ambition pathway sees high demand growth and universal access achieved by 2025, the Slow Down pathway follows a lower demand growth with a slower electrification rate and with a higher share of off-grid technologies, and the Big Business pathway prioritizes grid electricity first for the industrial sector, leading to slower residential electrification. The results show a large focus on grid extension and stand-alone PV deployment for least-cost electrification in case of low grid-generation costs and uninhibited grid expansion. However, in case of a slower grid rollout rate and high demand growth, a more dynamic evolution of the supply system is seen, where mini-grids play an important role in transitional electrification. Similarly, in the case where grid electricity generation comes at a higher cost, mini-grids prove to be cost-competitive with the centralized grid in many areas. Finally, we also show that transitional mini-grids, which are later incorporated into the centralized grid, risk increasing the investments significantly during the periods when these are integrated and mini-grid standards are not successfully implemented. In all cases, existing barriers to decentralized technologies must be removed to ensure off-grid technologies are deployed and potentially integrated with the centralized grid as needed
Energy projections for African countries
This report provides insights on energy supply and demand, power generation, investments and total system costs, water consumption and withdrawal by the energy sector as well as carbon dioxide emissions for the African continent.
The energy supply systems of forty-seven African countries are modelled individually and connected via gas and electricity trade links to identify the cost-optimal solution to satisfy each country's total final energy demand for the period 2015-2065. In this analysis, The Electricity Model Base for Africa (TEMBA) was extended to include a simple representation of the full energy system. It was also updated to include new data. Simulations were run using the medium- to long-term Open Source Energy Modelling System tool (OSeMOSYS). The TEMBA model produces aggregate results for the whole continental energy system and more detailed ones for the power system of each African country.
The scenarios examined in this study consider different emission trajectories and technology availability. The Reference scenario considers the national energy policies that were in place until 2017, whereas the 2.0°C and 1.5°C scenarios examine emission levels aligned with the climate targets agreed under the United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement. The scenarios have been aligned with the "Global Energy and Climate Outlook 2018: Greenhouse gas emissions and energy balances" report of the Joint Research Centre (Keramidas et al., 2018). The results demonstrate that power generation capacity will need to increase 10-fold from 2015 to 2065 to meet projected electricity demands. A significant proportion of this capacity will likely consist of renewable energy sources, particularly under the 2.0°C and 1.5°C scenarios, as technology costs fall. On the contrary, there will only be little investment for new coal generation. In addition, a number of African countries will invest in nuclear power plants and CCS technologies (biomass, coal, gas) in the future in order to achieve the emission targets set in the 2.0°C and 1.5°C scenarios.
The results also indicate how water demand from the energy sector could evolve. Under the Reference scenario, it is estimated that by 2065 the African energy system will contribute to a water withdrawal of approximately 4% of the total renewable water resources (TRWR) in Africa (3,950 bcm) (FAO - Food and Agriculture Organization of the United Nations, n.d.). On the one hand, this share appears meagre, but in reality, this number must be analysed in the perspective of the nexus between water for food, energy, household and productive uses. Most of the thermal power infrastructure is not located in remote places and is rather near to population centres. This creates an added complexity to future infrastructure planning. On the other hand, water withdrawals are expected to decrease to 1.2% and 1.6% of TRWR in the 2.0°C and 1.5°C scenarios respectively by 2065 owing to deep decarbonisation of the energy sector.JRC.C.7 - Knowledge for the Energy Unio
Strategic low-cost energy investment opportunities and challenges towards achieving universal access (SDG7) in each African nation
Abstract
Strategic energy planning to achieve universal access and cover the future energy needs in each African nation is essential to lead to effective, sustainable energy decisions to formulate mitigation and adaptation climate change policy measures. Africa can not afford a cost-increasing green energy transition pathway towards achieving SDG7. In this analysis, least-cost power generation investment options using energy systems analysis enhanced with geospatial data for each African nation are identified, considering different levels of electricity consumption per capita (Low, High) and costs of renewables (New Policies, Renewable Deployment scenarios). The power generation capacity needs to increase between 211GW (NPLs) and 302GW (RDHs) during 2021-2030 to achieve SDG7 in Africa, leading to electricity generation to rise between 6,221PJ (NPLs) - 7,527PJ (NPHs) by 2030. Higher electricity consumption levels lead to higher penetration of fossil fuel technologies in the power mix of Africa. To achieve the same electricity demand levels, decreasing renewables' costs can assist in a less carbon-intensive power system, although higher capacity is needed. However, Africa is still hard to achieve its green revolution. Depending on the scenario, grid-connected technologies are estimated to supply approximately 85%-90% of the total electricity generated in Africa in 2030, mini-grid technologies roughly 1%-6%, and stand-alone technologies 8%-11%. Solar off-grid and solar hybrid mini-grid technologies play an essential role in electrifying the current un-electrified settlements in residential areas. Natural gas will be the dominant fossil fuel source by 2030, while the decreasing costs of renewables make solar overtake hydropower. Higher penetration of renewable energy sources in the energy mix creates local jobs and increases cost-efficiency. Approximately 6.9 million (NPLs) to 9.6 million (RDHs) direct jobs can be created in Africa by expanding the power sector during 2020-2030 across the supply chain. Increasing the electricity consumption levels in Africa leads to higher total system costs, but it is estimated to create more jobs that can ensure political and societal stability. Also, the decreasing costs of renewables could further increase the penetration of renewables in the energy mix, leading to a higher number of jobs.</jats:p
Strategic low-cost energy investment opportunities and challenges towards achieving universal electricity access (SDG7) in forty-eight African nations
Strategic energy planning to achieve universal electricity access and meet the future energy needs of African nations is essential to formulate effective policy measures for climate change mitigation and adaptation. Africa can not afford a cost-prohibiting green energy transition to achieve United Nations Sustainable Development Goal 7. In this study, I employ open-access energy models, enhanced with geospatial data, to identify least-cost power generation investment options for forty-eight African nations. Different levels of electricity consumption per capita and costs of renewables are considered across four scenarios. According to the analysis, to achieve universal electricity access by 2030 in Africa, the power generation capacity needs to increase between 211GW-302GW, depending on electricity consumption levels and the cost of renewables considered, leading electricity generation to rise between 6,221PJ- 7,527PJ by 2030. Higher electricity generation levels lead to higher penetration of fossil fuel technologies in the power mix of Africa. Natural gas will be the dominant fossil fuel source by 2030, while the decreasing costs of renewables will lead solar to overtake hydropower. To meet the same electricity demand levels, decreasing the cost of renewables can enable a less carbon-intensive power system, although higher capacity is also needed. However, Africa is still hard to achieve its green revolution. Depending on electricity consumption levels and costs of renewables considered, grid-connected technologies are estimated to supply 85%-90% of total electricity generated in Africa in 2030, mini-grid technologies 1%-6%, and stand-alone technologies 8%-11%. Off-grid solar and hybrid mini-grid solar technologies are essential in electrifying residential areas. Higher penetration of renewable energy sources in the energy mix creates local jobs and increases cost-efficiency. The analysis demonstrates that 6.9 million to 9.6 million direct jobs, depending on the policies and renewable development levels, can be created in Africa by expanding the power sector from 2020 to 2030 across the supply chain. While increasing electricity consumption levels in Africa leads to higher total system costs, it is also estimated to create more jobs, fostering political and societal stability. Finally, the decreasing costs of renewables could further increase the penetration of renewables in the energy mix, leading to an even higher number of jobs.</p
Strategic low-cost energy investment opportunities and challenges towards achieving universal electricity access (SDG7) in forty-eight African nations
Abstract
Strategic energy planning to achieve universal electricity access and meet the future energy needs of African nations is essential to formulate effective policy measures for climate change mitigation and adaptation. Africa cannot afford a cost-prohibiting green energy transition to achieve United Nations Sustainable Development Goal 7. In this study, I employ open-access energy models, enhanced with geospatial data, to identify least-cost power generation investment options for forty-eight African nations. Different levels of electricity consumption per capita and costs of renewables are considered across four scenarios. According to the analysis, to achieve universal electricity access by 2030 in Africa, the power generation capacity needs to increase between 211 GW–302 GW, depending on electricity consumption levels and the cost of renewables considered, leading electricity generation to rise between 6221 PJ–7527 PJ by 2030. Higher electricity generation levels lead to higher penetration of fossil fuel technologies in the power mix of Africa. Natural gas will be the dominant fossil fuel source by 2030, while the decreasing costs of renewables will lead solar to overtake hydropower. To meet the same electricity demand levels, decreasing the cost of renewables can enable a less carbon-intensive power system, although higher capacity is also needed. However, Africa is still hard to achieve its green revolution. Depending on electricity consumption levels and costs of renewables considered, grid-connected technologies are estimated to supply 85%–90% of total electricity generated in Africa in 2030, mini-grid technologies 1%–6%, and stand-alone technologies 8%–11%. Off-grid solar and hybrid mini-grid solar technologies are essential in electrifying residential areas. Higher penetration of renewable energy sources in the energy mix creates local jobs and increases cost-efficiency. The analysis demonstrates that 6.9 million to 9.6 million direct jobs, depending on the policies and renewable development levels, can be created in Africa by expanding the power sector from 2020 to 2030 across the supply chain. While increasing electricity consumption levels in Africa leads to higher total system costs, it is also estimated to create more jobs, fostering political and societal stability. Finally, the decreasing costs of renewables could further increase the penetration of renewables in the energy mix, leading to an even higher number of jobs.</jats:p
Electrified Africa – Associated investments and costs
Africa is a resource rich continent in both fossil fuels and renewable energy sources. Nevertheless, its significantly underdeveloped electricity infrastructure and un-deployed power generation potential lead to more than 620 million people to lack electricity access and the rest to face shortages and high prices. Africa’s rapidly increasing electricity demand, from 621 TWh in 2012 to about 1870 TWh in 2040, as well as rapid population growth, make urgent the necessity for national and regional investments which will lead on reliable and affordable energy widely available and achieve social and economic development. This thesis examines the national associated costs and investments which are needed to electrify the current un-electrified population of the continent by 2030 and provide them to have an electricity consumption of 696kWh/household (TIER 3) that year and 2195kWh/household (TIER 5) in 2050, as well as the continent to cover its electricity demands for the period 2010-2050. To conduct this study, The Electricity Model Base for Africa (TEMBA) [1] developed in the Open Source energy Modelling SYstem (OSeMOSYS) [2] is used, with the initial modeling platform to remain the same but several parameters to be updated to the latest up-to date source and the objective of the TEMBA study to differentiate. The parameters which have been updated in this study for each country include: electricity demands (2010-2050), existing and planned power plant capacities, technology costs, fuel availability and prices, national fuel reserves, local transmission and distribution losses, and renewable resources potential. Moreover, emission factors have been added into the model to estimate greenhouse gas emissions. Different trade scenarios have been implemented to investigate the power generation potential and the financial requirements which are needed by the continent to cover its electricity demands. An expanded electricity trading scheme in Africa, as is being indicated in the Enhanced scenario, exploits its country’s energy resource potential and lead to a decrease of the investment and fuel costs as well as of the carbon dioxide emissions. The open-source nature of the model allows the data and the model under which this study is being conducted to be publicly available for future research
Trade-offs and conflicting objectives of decision-making investments in low-carbon technology portfolios for sustainable development : National and continental insights offered by applying energy system models
Energy infrastructure and appropriate energy policies are crucial for sustainable development and to meet Sustainable Development Goals (SDGs). Limiting global warming potential below 1.5oC would require “rapid and far-reaching” transitions and unprecedented changes in all aspects of society. Several factors influence investment decisions on energy conversion technologies and their specific locations. The choice, timing, and location of energy investments affect the total system cost, socio-economic development, the environment (e.g., emissions, water use), and a nation's energy security. However, existing national energy modelling initiatives only investigate a subset of these pillars for achieving sustainability. This thesis examines the challenges associated with the energy transition of low-and middle-income countries (Paraguay, Ethiopia, Africa). This work considers national and global policies, focusing on achieving SDG7 and SDG13. The dissertation includes a cover essay and four appended papers. The research conducted in this Thesis examines how energy-systems models can assist in understanding an energy system's complex interactions for sustainable development. Specifically, the results highlight hydropower and solar PV as key technologies to achieve climate change targets, energy security and energy access goals. Hydropower and other renewable electricity can be exported to bolster energy security for the exporting country, although export revenues are eroded by local demand growth and low export prices. The benefits of low-cost electricity provided by cross-border hydropower should be balanced against energy security concerns for the importing country. The research demonstrates the benefits of regional coordination, with trade enabling renewable resources to be harnessed and the electricity transmitted to demand centres. Although RET decreases carbon dioxide emissions and water use compared to fossil-fuel plants and creates more jobs, they require high up-front capital costs offset by the lower operating fuel costs in the long term. Thus, increasing the ambition of climate targets while achieving electricity access results in lower cumulative costs. Also, although hydropower and renewable technologies build climate resilience, hydropower operation depends on climate variability affecting energy security. Thus, mitigation strategies should consider the associated challenges of climate change in hydropower investments. Hydropower and renewables are primarily grid-connected technologies, so off-grid and mini-grid systems are key complements to national-grid expansion when pushing for universal energy access. They also impact energy security, total system costs and socio-economic development. This Thesis's outcomes can support governments in strategic energy planning to identify future renewable energy projects and ensure their financial viability. Energy systems in their transition need to be affordable, reliable and sustainable (e.g., energy secured, combat climate change) by being climate-resilient. The thesis findings demonstrate that nations need integrated energy planning, accounting for the geospatial characteristics of energy technologies, and water resources management to achieve SDG7 and build climate-resilient (SDG13). A broad portfolio of renewable technologies, interconnectors and a decentralized power generation system providing electricity closer to the end-user demand is needed to enhance energy security, decrease environmental pressures and provide affordable electricity for a nation.Energiinfrastruktur och lämplig energipolitik är avgörande för att uppnå de globala målen för hållbar utveckling (SDG). Att begränsa den globala uppvärmningen till 1,5 ᵒC kräver "snabba och långtgående" övergångar och förändringar utan motstycke i alla aspekter av samhället. Flera faktorer påverkar investeringsbeslut och val av plats för olika energiomvandlingsteknologier. Energiinvesteringar, deras tidpunkt och plats påverkar den totala systemkostnaden, socioekonomisk utveckling, miljön (t.ex. utsläpp, vattenanvändning) och en nations energisäkerhet. Befintliga nationella initiativ för energimodellering undersöker dock bara en delmängd av dessa aspekter.Denna avhandling undersöker utmaningarna i samband med energiomställningen i låg- och medelinkomstländer (mer specifikt Paraguay, Etiopien och övriga länder i Afrika). Detta arbete tar hänsyn till nationell och global policy, med fokus på att uppnå SDG7 och SDG13. Avhandlingen innehåller en omslagsuppsats och fyra bifogade artiklar. Forskningen i denna avhandling undersöker hur energisystemmodeller kan hjälpa till för att öka förståelsen av ett energisystems komplexa interaktioner för hållbar utveckling. Specifikt lyfter resultaten fram vattenkraft och solenergi som nyckelteknologier för att uppnå målen gällande klimatförändringar, energisäkerhet och energitillgång. Vattenkraft och annan förnybar el kan exporteras för att stärka energitryggheten för exportlandet, även i fallen då exportintäkterna urholkas av lokal efterfrågetillväxt och låga exportpriser. Fördelarna med lågprisel från gränsöverskridande ledningar bör vägas mot energisäkerhetsproblem för importlandet. Forskningen visar fördelarna med regional samordning, handel som möjliggör att förnybara resurser kan utnyttjas och elen överföras till områden med hög efterfrågan av energi. Även om förnybar teknologi kräver höga initiala investeringar, minskar de koldioxidutsläppen och vattenanvändningen jämfört med fossilbränsleanläggningar, samt skapar fler jobbtillfällen och har lägre bränslekostnader. Att höja ambitionen med klimatmål samtidigt som man uppnår eltillgång resulterar således i lägre kumulativa kostnader. Även om vattenkraft och annan förnybar teknik bygger klimattålighet, påverkas vattenkraftdriften på klimatförändringar som påverkar energisäkerheten. Därför bör klimatåtaganden ta vattenkraften i beaktande. Vattenkraft och förnybar energi är i första hand nätanslutna tekniker, därmed är lokala elnät viktiga komplement till nationell nätexpansion när man strävar mot universell tillgång till energi. De påverkar också energisäkerhet, totala systemkostnader och socioekonomisk utveckling. Resultaten av denna avhandling kan stödja regeringar i strategisk energiplanering för att identifiera framtida projekt för förnybar energi och säkerställa deras ekonomiska bärkraft. Energisystem i sin övergång måste vara ekonomiskt överkomliga, tillförlitliga och moderna (t.ex. energisäkrade, bekämpa klimatförändringar) genom att vara klimattåliga. Resultaten av denna avhandling visar att nationer behöver integrerad energiplanering med hänsyn till olika teknologiers geospatiala egenskaper och vattenanvändning för att uppnå SDG7 och bygga klimattåligt (SDG13). En bred portfölj av förnybar teknik, och ett decentraliserat kraftgenereringssystem som tillhandahåller elektricitet närmare slutanvändarna behövs för att öka energisäkerheten, minska miljötrycket och tillhandahålla elektricitet till överkomligt pris
Electrified Africa – Associated investments and costs
Africa is a resource rich continent in both fossil fuels and renewable energy sources. Nevertheless, its significantly underdeveloped electricity infrastructure and un-deployed power generation potential lead to more than 620 million people to lack electricity access and the rest to face shortages and high prices. Africa’s rapidly increasing electricity demand, from 621 TWh in 2012 to about 1870 TWh in 2040, as well as rapid population growth, make urgent the necessity for national and regional investments which will lead on reliable and affordable energy widely available and achieve social and economic development. This thesis examines the national associated costs and investments which are needed to electrify the current un-electrified population of the continent by 2030 and provide them to have an electricity consumption of 696kWh/household (TIER 3) that year and 2195kWh/household (TIER 5) in 2050, as well as the continent to cover its electricity demands for the period 2010-2050. To conduct this study, The Electricity Model Base for Africa (TEMBA) [1] developed in the Open Source energy Modelling SYstem (OSeMOSYS) [2] is used, with the initial modeling platform to remain the same but several parameters to be updated to the latest up-to date source and the objective of the TEMBA study to differentiate. The parameters which have been updated in this study for each country include: electricity demands (2010-2050), existing and planned power plant capacities, technology costs, fuel availability and prices, national fuel reserves, local transmission and distribution losses, and renewable resources potential. Moreover, emission factors have been added into the model to estimate greenhouse gas emissions. Different trade scenarios have been implemented to investigate the power generation potential and the financial requirements which are needed by the continent to cover its electricity demands. An expanded electricity trading scheme in Africa, as is being indicated in the Enhanced scenario, exploits its country’s energy resource potential and lead to a decrease of the investment and fuel costs as well as of the carbon dioxide emissions. The open-source nature of the model allows the data and the model under which this study is being conducted to be publicly available for future research
Trade-offs and conflicting objectives of decision-making investments in low-carbon technology portfolios for sustainable development : National and continental insights offered by applying energy system models
Energy infrastructure and appropriate energy policies are crucial for sustainable development and to meet Sustainable Development Goals (SDGs). Limiting global warming potential below 1.5oC would require “rapid and far-reaching” transitions and unprecedented changes in all aspects of society. Several factors influence investment decisions on energy conversion technologies and their specific locations. The choice, timing, and location of energy investments affect the total system cost, socio-economic development, the environment (e.g., emissions, water use), and a nation's energy security. However, existing national energy modelling initiatives only investigate a subset of these pillars for achieving sustainability. This thesis examines the challenges associated with the energy transition of low-and middle-income countries (Paraguay, Ethiopia, Africa). This work considers national and global policies, focusing on achieving SDG7 and SDG13. The dissertation includes a cover essay and four appended papers. The research conducted in this Thesis examines how energy-systems models can assist in understanding an energy system's complex interactions for sustainable development. Specifically, the results highlight hydropower and solar PV as key technologies to achieve climate change targets, energy security and energy access goals. Hydropower and other renewable electricity can be exported to bolster energy security for the exporting country, although export revenues are eroded by local demand growth and low export prices. The benefits of low-cost electricity provided by cross-border hydropower should be balanced against energy security concerns for the importing country. The research demonstrates the benefits of regional coordination, with trade enabling renewable resources to be harnessed and the electricity transmitted to demand centres. Although RET decreases carbon dioxide emissions and water use compared to fossil-fuel plants and creates more jobs, they require high up-front capital costs offset by the lower operating fuel costs in the long term. Thus, increasing the ambition of climate targets while achieving electricity access results in lower cumulative costs. Also, although hydropower and renewable technologies build climate resilience, hydropower operation depends on climate variability affecting energy security. Thus, mitigation strategies should consider the associated challenges of climate change in hydropower investments. Hydropower and renewables are primarily grid-connected technologies, so off-grid and mini-grid systems are key complements to national-grid expansion when pushing for universal energy access. They also impact energy security, total system costs and socio-economic development. This Thesis's outcomes can support governments in strategic energy planning to identify future renewable energy projects and ensure their financial viability. Energy systems in their transition need to be affordable, reliable and sustainable (e.g., energy secured, combat climate change) by being climate-resilient. The thesis findings demonstrate that nations need integrated energy planning, accounting for the geospatial characteristics of energy technologies, and water resources management to achieve SDG7 and build climate-resilient (SDG13). A broad portfolio of renewable technologies, interconnectors and a decentralized power generation system providing electricity closer to the end-user demand is needed to enhance energy security, decrease environmental pressures and provide affordable electricity for a nation.Energiinfrastruktur och lämplig energipolitik är avgörande för att uppnå de globala målen för hållbar utveckling (SDG). Att begränsa den globala uppvärmningen till 1,5 ᵒC kräver "snabba och långtgående" övergångar och förändringar utan motstycke i alla aspekter av samhället. Flera faktorer påverkar investeringsbeslut och val av plats för olika energiomvandlingsteknologier. Energiinvesteringar, deras tidpunkt och plats påverkar den totala systemkostnaden, socioekonomisk utveckling, miljön (t.ex. utsläpp, vattenanvändning) och en nations energisäkerhet. Befintliga nationella initiativ för energimodellering undersöker dock bara en delmängd av dessa aspekter.Denna avhandling undersöker utmaningarna i samband med energiomställningen i låg- och medelinkomstländer (mer specifikt Paraguay, Etiopien och övriga länder i Afrika). Detta arbete tar hänsyn till nationell och global policy, med fokus på att uppnå SDG7 och SDG13. Avhandlingen innehåller en omslagsuppsats och fyra bifogade artiklar. Forskningen i denna avhandling undersöker hur energisystemmodeller kan hjälpa till för att öka förståelsen av ett energisystems komplexa interaktioner för hållbar utveckling. Specifikt lyfter resultaten fram vattenkraft och solenergi som nyckelteknologier för att uppnå målen gällande klimatförändringar, energisäkerhet och energitillgång. Vattenkraft och annan förnybar el kan exporteras för att stärka energitryggheten för exportlandet, även i fallen då exportintäkterna urholkas av lokal efterfrågetillväxt och låga exportpriser. Fördelarna med lågprisel från gränsöverskridande ledningar bör vägas mot energisäkerhetsproblem för importlandet. Forskningen visar fördelarna med regional samordning, handel som möjliggör att förnybara resurser kan utnyttjas och elen överföras till områden med hög efterfrågan av energi. Även om förnybar teknologi kräver höga initiala investeringar, minskar de koldioxidutsläppen och vattenanvändningen jämfört med fossilbränsleanläggningar, samt skapar fler jobbtillfällen och har lägre bränslekostnader. Att höja ambitionen med klimatmål samtidigt som man uppnår eltillgång resulterar således i lägre kumulativa kostnader. Även om vattenkraft och annan förnybar teknik bygger klimattålighet, påverkas vattenkraftdriften på klimatförändringar som påverkar energisäkerheten. Därför bör klimatåtaganden ta vattenkraften i beaktande. Vattenkraft och förnybar energi är i första hand nätanslutna tekniker, därmed är lokala elnät viktiga komplement till nationell nätexpansion när man strävar mot universell tillgång till energi. De påverkar också energisäkerhet, totala systemkostnader och socioekonomisk utveckling. Resultaten av denna avhandling kan stödja regeringar i strategisk energiplanering för att identifiera framtida projekt för förnybar energi och säkerställa deras ekonomiska bärkraft. Energisystem i sin övergång måste vara ekonomiskt överkomliga, tillförlitliga och moderna (t.ex. energisäkrade, bekämpa klimatförändringar) genom att vara klimattåliga. Resultaten av denna avhandling visar att nationer behöver integrerad energiplanering med hänsyn till olika teknologiers geospatiala egenskaper och vattenanvändning för att uppnå SDG7 och bygga klimattåligt (SDG13). En bred portfölj av förnybar teknik, och ett decentraliserat kraftgenereringssystem som tillhandahåller elektricitet närmare slutanvändarna behövs för att öka energisäkerheten, minska miljötrycket och tillhandahålla elektricitet till överkomligt pris
- …
