87 research outputs found

    Np95 Is Implicated in Pericentromeric Heterochromatin Replication and in Major Satellite Silencing

    Get PDF
    Heterochromatin plays an important role in transcriptional repression, for the correct segregation of chromosomes and in the maintenance of genome stability. Pericentric heterochromatin (PH) replication and formation have been proposed to occur in the pericentric heterochromatin duplication body (pHDB). A central question is how the underacetylated state of heterochromatic histone H4 tail is established and controlled, because it is a key event during PH replication and is essential to maintain the compacted and silenced state of these regions. Np95 is a cell cycle regulated and is a nuclear histone-binding protein that also recruits HDAC-1 to target promoters. It is essential for S phase and for embryonic formation and is implicated in chromosome stability. Here we show that Np95 is part of the pHDB, and its functional ablation causes a strong reduction in PH replication. Depletion of Np95 also causes a hyperacetylation of lysines 8, 12, and 16 of heterochromatin histone H4 and an increase of pericentromeric major satellite transcription, whose RNAs are key players for heterochromatin formation. We propose that Np95 is a new relevant protein involved in heterochromatin replication and formation

    Human Adipose-Derived Stem Cell-Conditioned Medium Promotes Vascularization of Nanostructured Scaffold Transplanted into Nude Mice

    Get PDF
    Several studies have been conducted on the interaction between three-dimensional scaffolds and mesenchymal stem cells for the regeneration of damaged tissues. Considering that stem cells do not survive for sufficient time to directly sustain tissue regeneration, it is essential to develop cell-free systems to be applied in regenerative medicine. In this work, by in vivo experiments, we established that a collagen-nanostructured scaffold, loaded with a culture medium conditioned with mesenchymal stem cells derived from adipose tissue (hASC-CM), exerts a synergic positive effect on angiogenesis, fundamental in tissue regeneration. To this aim, we engrafted athymic BALB-C nude mice with four different combinations: scaffold alone; scaffold with hASCs; scaffold with hASC crude protein extract; scaffold with hASC-CM. After their removal, we verified the presence of blood vessels by optical microscopy and confirmed the vascularization evaluating, by real-time PCR, several vascular growth factors: CD31, CD34, CD105, ANGPT1, ANGPT2, and CDH5. Our results showed that blood vessels were absent in the scaffold grafted alone, while all the other systems appeared vascularized, a finding supported by the over-expression of CD31 and CDH5 mRNA. In conclusion, our data sustain the capability of hASC-CM to be used as a therapeutic cell-free approach for damaged tissue regeneration

    The role of b cells in pe pathophysiology: A potential target for perinatal cell-based therapy?

    Get PDF
    The pathophysiology of preeclampsia (PE) is poorly understood; however, there is a large body of evidence that suggests a role of immune cells in the development of PE. Amongst these, B cells are a dominant element in the pathogenesis of PE, and they have been shown to play an important role in various immune-mediated diseases, both as pro-inflammatory and regulatory cells. Perinatal cells are defined as cells from birth-associated tissues isolated from term placentas and fetal annexes and more specifically from the amniotic membrane, chorionic membrane, chorionic villi, umbilical cord (including Wharton\u2019s jelly), the basal plate, and the amniotic fluid. They have drawn particular attention in recent years due to their ability to modulate several aspects of immunity, making them promising candidates for the prevention and treatment of various immune-mediated diseases. In this review we describe main findings regarding the multifaceted in vitro and in vivo immunomodulatory properties of perinatal cells, with a focus on B lymphocytes. Indeed, we discuss evidence on the ability of perinatal cells to inhibit B cell proliferation, impair B cell differentiation, and promote regulatory B cell formation. Therefore, the findings discussed herein unveil the possibility to modulate B cell activation and function by exploiting perinatal immunomodulatory properties, thus possibly representing a novel therapeutic strategy in PE

    Shaping the Future of Perinatal Cells: Lessons From the Past and Interpretations of the Present

    Get PDF
    Since their discovery and characterization, mesenchymal stromal cells (MSC) have been a topic of great interest in regenerative medicine. Over the last 10 years, detailed studies investigated the properties of MSC from perinatal tissues and have indicated that these cells may represent important tools for restoring tissue damage or promoting regeneration and repair of the tissue microenvironment. At first, perinatal tissue-derived MSC drew attention due to their potential differentiation capacities suggested by their early embryological origin. It is nowadays accepted that perinatal tissue-derived MSC are promising for a wide range of regenerative medicine applications because of their unique immune modulatory properties, rather than their differentiation ability. As a matter of fact, the activation and function of various cells of the innate and adaptive immune systems are suppressed and modulated by MSC from different perinatal tissues, such as human term placenta. However, the mechanisms by which they act on immune cells to facilitate tissue repair during pathological processes remain to be thoroughly elucidated to develop safe and efficient therapeutic approaches. In addition to immune modulatory ability, several other peculiar characteristics of placenta MSC, less explored and/or more debated, are being investigated. These include an understanding of the anti-microbial properties and the role of placental MSC in tumor progression. Moreover, a thorough investigation on preparation methods, bioactive factors, mechanisms of action of the cell secretome, and the development of potency assays to predict clinical efficacy of placenta MSC and their products, are necessary to provide a solid basis for their clinical application

    Perinatal Cells: A Promising COVID-19 Therapy?

    Get PDF
    The COVID-19 pandemic has become a priority in the health systems of all nations worldwide. In fact, there are currently no specific drugs or preventive treatments such as vaccines. The numerous therapies available today aim to counteract the symptoms caused by the viral infection that in some subjects can evolve causing acute respiratory distress syndromes (ARDS) with consequent admission to intensive care unit. The exacerbated response of the immune system, through cytokine storm, causes extensive damage to the lung tissue, with the formation of edema, fibrotic tissues and susceptibility to opportunistic infections. The inflammatory picture is also aggravated by disseminated intravascular coagulation which worsens the damage not only to the respiratory system, but also to other organs. In this context, perinatal cells represent a valid strategy thanks to their strong immunomodulatory potential, their safety profile, the ability to reduce fibrosis and stimulate reparative processes. Furthermore, perinatal cells exert antibacterial and antiviral actions. This review therefore provides an overview of the characteristics of perinatal cells with a particular focus on the beneficial effects that they could have in patients with COVID-19, and more specifically for their potential use in the treatment of ARDS and sepsis

    Highly connected 3D chromatin networks established by an oncogenic fusion protein shape tumor cell identity.

    Get PDF
    Cell fate transitions observed in embryonic development involve changes in three-dimensional genomic organization that provide proper lineage specification. Whether similar events occur within tumor cells and contribute to cancer evolution remains largely unexplored. We modeled this process in the pediatric cancer Ewing sarcoma and investigated high-resolution looping and large-scale nuclear conformation changes associated with the oncogenic fusion protein EWS-FLI1. We show that chromatin interactions in tumor cells are dominated by highly connected looping hubs centered on EWS-FLI1 binding sites, which directly control the activity of linked enhancers and promoters to establish oncogenic expression programs. Conversely, EWS-FLI1 depletion led to the disassembly of these looping networks and a widespread nuclear reorganization through the establishment of new looping patterns and large-scale compartment configuration matching those observed in mesenchymal stem cells, a candidate Ewing sarcoma progenitor. Our data demonstrate that major architectural features of nuclear organization in cancer cells can depend on single oncogenes and are readily reversed to reestablish latent differentiation programs

    Comparison of EV-free fraction, EVs, and total secretome of amniotic mesenchymal stromal cells for their immunomodulatory potential: a translational perspective

    Get PDF
    Amniotic mesenchymal stromal cells (hAMSCs) have unique immunomodulatory properties demonstrated in vitro and in vivo in various diseases in which the dysregulated immune system plays a major role. The immunomodulatory and pro-regenerative effects of MSCs, among which hAMSCs lie in the bioactive factors they secrete and in their paracrine activity, is well known. The mix of these factors (i.e., secretome) can be either freely secreted or conveyed by extracellular vesicles (EV), thus identifying two components in the cell secretome: EV-free and EV fractions. This study aimed to discern the relative impact of the individual components on the immunomodulatory action of the hAMSC secretome in order to obtain useful information for implementing future therapeutic approaches using immunomodulatory therapies based on the MSC secretome. To this aim, we isolated EVs from the hAMSC secretome (hAMSC-CM) by ultracentrifugation and validated the vesicular product according to the International Society for Extracellular Vesicles (ISEV) criteria. EVs were re-diluted in serum-free medium to maintain the EV concentration initially present in the original CM. We compared the effects of the EV-free and EV fractions with those exerted by hAMSC-CM in toto on the activation and differentiation of immune cell subpopulations belonging to both the innate and adaptive immune systems.We observed that the EV-free fraction, similar to hAMSC-CM in toto, a) decreases the proliferation of activated peripheral blood mononuclear cells (PBMC), b) reduces the polarization of T cells toward inflammatory Th subsets, and induces the induction of regulatory T cells; c) affects monocyte polarization to antigen-presenting cells fostering the acquisition of anti-inflammatory macrophage (M2) markers; and d) reduces the activation of B lymphocytes and their maturation to plasma cells. We observed instead that all investigated EV fractions, when used in the original concentrations, failed to exert any immunomodulatory effect, even though we show that EVs are internalized by various immune cells within PBMC. These findings suggest that the active component able to induce immune regulation, tested at original concentrations, of the hAMSC secretome resides in factors not conveyed in EVs. However, EVs isolated from hAMSC could exert actions on other cell types, as reported by others

    Human amniotic mesenchymal stromal cells support the ex vivo expansion of cord blood hematopoietic stem cells

    Get PDF
    Currently over 30 000 allogeneic hematopoietic stem cell (HSC) transplantations have been performed for the treatment of hematological and nonhematological diseases using HSC from umbilical cord blood (CB). However, the wide utilization of CB as a source of HSC is limited by the low number of cells recovered. One strategy to expand ex vivo CB-HSC is represented by the use of bone marrow mesenchymal stromal cells (BM-MSCs) as a feeder to enhance HSC proliferation while maintaining HSC stemness. Indeed, BM-MSCs have been recognized as one of the most relevant players in the HSC niche. Thus, it has been hypothesized that they can support the ex vivo expansion of HSC by mimicking the physiological microenvironment present in the hematopoietic niche. Due to the role of placenta in supporting fetal hematopoiesis, MSC derived from the amniotic membrane (hAMSC) of human term placenta could represent an interesting alternative to BM-MSC as a feeder layer to enhance the proliferation and maintain HSC stemness. Therefore, in this study we investigated if hAMSC could support the ex vivo expansion of HSC and progenitor cells. The capacity of hAMSCs to support the ex vivo expansion of CB-HSC was evaluated in comparison to the control condition represented by the CB-CD34+ cells without a feeder layer. The coculture was performed at two different CD34+:MSC ratios (1:2 and 1:8) in both cell-to-cell contact and transwell setting. After 7 days, the cells were collected and analyzed for phenotype and functionality. Our results suggest that hAMSCs represent a valuable alternative to BM-MSC to support: (a) the ex vivo expansion of CB-HSC in both contact and transwell systems, (b) the colony forming unit ability, and (c) long-term culture initiating cells ability. Overall, these findings may contribute to address the unmet need of high HSC content in CB units available for transplantation

    Perinatal Derivatives: Where Do We Stand? A Roadmap of the Human Placenta and Consensus for Tissue and Cell Nomenclature

    Get PDF
    Progress in the understanding of the biology of perinatal tissues has contributed to the breakthrough revelation of the therapeutic effects of perinatal derivatives (PnD), namely birth-associated tissues, cells, and secreted factors. The significant knowledge acquired in the past two decades, along with the increasing interest in perinatal derivatives, fuels an urgent need for the precise identification of PnD and the establishment of updated consensus criteria policies for their characterization. The aim of this review is not to go into detail on preclinical or clinical trials, but rather we address specific issues that are relevant for the definition/characterization of perinatal cells, starting from an understanding of the development of the human placenta, its structure, and the different cell populations that can be isolated from the different perinatal tissues. We describe where the cells are located within the placenta and their cell morphology and phenotype. We also propose nomenclature for the cell populations and derivatives discussed herein. This review is a joint effort from the COST SPRINT Action (CA17116), which broadly aims at approaching consensus for different aspects of PnD research, such as providing inputs for future standards for the processing and in vitro characterization and clinical application of PnD.Austrian Science Fund (FWF) DOC 31-B26Medical University GrazUniversita Cattolica del Sacro CuorePRIN 2017 program of Italian Ministry of Research and University (MIUR) 2017RSAFK7Ministry of Health, Italy GR-2018-12366992Slovenian Research Agency - Slovenia P3-0108MRIC UL IP-0510Plan Estatal de Investigacion Cientifica y Tecnica y de InnovacionISCIII Subdireccion General de Evaluacion y Fomento de la InvestigacionMinisterio de Economia y Competitividad, Spain PI16/01642European Union (EU)European Community (EC)German Research Foundation (DFG) GE-2223/2-

    Three SRA-Domain Methylcytosine-Binding Proteins Cooperate to Maintain Global CpG Methylation and Epigenetic Silencing in Arabidopsis

    Get PDF
    Methylcytosine-binding proteins decipher the epigenetic information encoded by DNA methylation and provide a link between DNA methylation, modification of chromatin structure, and gene silencing. VARIANT IN METHYLATION 1 (VIM1) encodes an SRA (SET- and RING-associated) domain methylcytosine-binding protein in Arabidopsis thaliana, and loss of VIM1 function causes centromere DNA hypomethylation and centromeric heterochromatin decondensation in interphase. In the Arabidopsis genome, there are five VIM genes that share very high sequence similarity and encode proteins containing a PHD domain, two RING domains, and an SRA domain. To gain further insight into the function and potential redundancy among the VIM proteins, we investigated strains combining different vim mutations and transgenic vim knock-down lines that down-regulate multiple VIM family genes. The vim1 vim3 double mutant and the transgenic vim knock-down lines showed decreased DNA methylation primarily at CpG sites in genic regions, as well as repeated sequences in heterochromatic regions. In addition, transcriptional silencing was released in these plants at most heterochromatin regions examined. Interestingly, the vim1 vim3 mutant and vim knock-down lines gained ectopic CpHpH methylation in the 5S rRNA genes against a background of CpG hypomethylation. The vim1 vim2 vim3 triple mutant displayed abnormal morphological phenotypes including late flowering, which is associated with DNA hypomethylation of the 5′ region of FWA and release of FWA gene silencing. Our findings demonstrate that VIM1, VIM2, and VIM3 have overlapping functions in maintenance of global CpG methylation and epigenetic transcriptional silencing
    corecore