3,960 research outputs found

    Astrophysical signatures of boson stars: quasinormal modes and inspiral resonances

    Full text link
    Compact bosonic field configurations, or boson stars, are promising dark matter candidates which have been invoked as an alternative description for the supermassive compact objects in active galactic nuclei. Boson stars can be comparable in size and mass to supermassive black holes and they are hard to distinguish by electromagnetic observations. However, boson stars do not possess an event horizon and their global spacetime structure is different from that of a black hole. This leaves a characteristic imprint in the gravitational-wave emission, which can be used as a discriminant between black holes and other horizonless compact objects. Here we perform a detailed study of boson stars and their gravitational-wave signatures in a fully relativistic setting, a study which was lacking in the existing literature in many respects. We construct several fully relativistic boson star configurations, and we analyze their geodesic structure and free oscillation spectra, or quasinormal modes. We explore the gravitational and scalar response of boson star spacetimes to an inspiralling stellar-mass object and compare it to its black hole counterpart. We find that a generic signature of compact boson stars is the resonant-mode excitation by a small compact object on stable quasi-circular geodesic motion.Comment: 20 pages, 8 figures. v2: minor corrections, version to be published in Phys. Rev. D. v3: final versio

    Light rings as observational evidence for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects

    Full text link
    Ultracompact objects are self-gravitating systems with a light ring. It was recently suggested that fluctuations in the background of these objects are extremely long-lived and might turn unstable at the nonlinear level, if the object is not endowed with a horizon. If correct, this result has important consequences: objects with a light ring are black holes. In other words, the nonlinear instability of ultracompact stars would provide a strong argument in favor of the "black hole hypothesis," once electromagnetic or gravitational-wave observations confirm the existence of light rings. Here we explore in some depth the mode structure of ultracompact stars, in particular constant-density stars and gravastars. We show that the existence of very long-lived modes -- localized near a second, stable null geodesic -- is a generic feature of gravitational perturbations of such configurations. Already at the linear level, such modes become unstable if the object rotates sufficiently fast to develop an ergoregion. Finally, we conjecture that the long-lived modes become unstable under fragmentation via a Dyson-Chandrasekhar-Fermi mechanism at the nonlinear level. Depending on the structure of the star, it is also possible that nonlinearities lead to the formation of small black holes close to the stable light ring. Our results suggest that the mere observation of a light ring is a strong evidence for the existence of black holes.Comment: 10 pages, RevTeX

    Echoes of ECOs: gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale

    Full text link
    Gravitational waves from binary coalescences provide one of the cleanest signatures of the nature of compact objects. It has been recently argued that the post-merger ringdown waveform of exotic ultracompact objects is initially identical to that of a black-hole, and that putative corrections at the horizon scale will appear as secondary pulses after the main burst of radiation. Here we extend this analysis in three important directions: (i) we show that this result applies to a large class of exotic compact objects with a photon sphere for generic orbits in the test-particle limit; (ii) we investigate the late-time ringdown in more detail, showing that it is universally characterized by a modulated and distorted train of "echoes" of the modes of vibration associated with the photon sphere; (iii) we study for the first time equal-mass, head-on collisions of two ultracompact boson stars and compare their gravitational-wave signal to that produced by a pair of black-holes. If the initial objects are compact enough as to mimic a binary black-hole collision up to the merger, the final object exceeds the maximum mass for boson stars and collapses to a black-hole. This suggests that - in some configurations - the coalescence of compact boson stars might be almost indistinguishable from that of black-holes. On the other hand, generic configurations display peculiar signatures that can be searched for in gravitational-wave data as smoking guns of exotic compact objects.Comment: 13 pages, RevTex4. v2: typo in equation 7 corrected, references added, to appear in PR

    Gravitational instabilities of superspinars

    Get PDF
    Superspinars are ultracompact objects whose mass M and angular momentum J violate the Kerr bound (cJ/GM^2>1). Recent studies analyzed the observable consequences of gravitational lensing and accretion around superspinars in astrophysical scenarios. In this paper we investigate the dynamical stability of superspinars to gravitational perturbations, considering either purely reflecting or perfectly absorbing boundary conditions at the "surface" of the superspinar. We find that these objects are unstable independently of the boundary conditions, and that the instability is strongest for relatively small values of the spin. Also, we give a physical interpretation of the various instabilities that we find. Our results (together with the well-known fact that accretion tends to spin superspinars down) imply that superspinars are very unlikely astrophysical alternatives to black holes.Comment: 15 pages, 9 figures, 1 table. v2: Fig. 8 and Section I improved. v3: minor changes to match the published versio

    Black-Hole Bombs and Photon-Mass Bounds

    Full text link
    Generic extensions of the standard model predict the existence of ultralight bosonic degrees of freedom. Several ongoing experiments are aimed at detecting these particles or constraining their mass range. Here we show that massive vector fields around rotating black holes can give rise to a strong superradiant instability which extracts angular momentum from the hole. The observation of supermassive spinning black holes imposes limits on this mechanism. We show that current supermassive black hole spin estimates provide the tightest upper limits on the mass of the photon (mv<4x10^{-20} eV according to our most conservative estimate), and that spin measurements for the largest known supermassive black holes could further lower this bound to mv<10^{-22} eV. Our analysis relies on a novel framework to study perturbations of rotating Kerr black holes in the slow-rotation regime, that we developed up to second order in rotation, and that can be extended to other spacetime metrics and other theories.Comment: 5 pages, 2 figures. References added. Matches published versio

    Floating and sinking: the imprint of massive scalars around rotating black holes

    Full text link
    We study the coupling of massive scalar fields to matter in orbit around rotating black holes. It is generally expected that orbiting bodies will lose energy in gravitational waves, slowly inspiralling into the black hole. Instead, we show that the coupling of the field to matter leads to a surprising effect: because of superradiance, matter can hover into "floating orbits" for which the net gravitational energy loss at infinity is entirely provided by the black hole's rotational energy. Orbiting bodies remain floating until they extract sufficient angular momentum from the black hole, or until perturbations or nonlinear effects disrupt the orbit. For slowly rotating and nonrotating black holes floating orbits are unlikely to exist, but resonances at orbital frequencies corresponding to quasibound states of the scalar field can speed up the inspiral, so that the orbiting body "sinks". These effects could be a smoking gun of deviations from general relativity.Comment: 5 pages, two figures, RevTeX4.1. v2: Published in Physical Review Letter

    Numerical methods for hyperbolic and parabolic integro-differential equations

    Get PDF
    An analysis by energy methods is given for fully discrete numerical methods for time-dependent partial integro-differential equations. Stability and error estimates are derived in H1 and L2. The methods considered pay attention to the storage needs during time-stepping

    Bioactivities of extracts from the marine sponge Halichondria panicea

    Get PDF
    In the present study, we screened the biological activity of extracts from the marine sponge Halichondria panicea collected in the Arabian Sea. Crude toxin was obtained by methanol, chloroform-methanol (2:1) and aqueous extraction. Subsequently, the protein concentration of each crude extract was determined. The impact of both sponge methanolic and aqueous extracts was found to increase activities of Na+-K+ ATP-ase and Mg++ ATP-ase. In the case of chloroform-methanol extract, higher concentrations increased acetylcholine esterase (AchE) activity. The methanolic and chloroform-methanol extracts exhibited hemolytic activity on chicken and human erythrocytes, whereas the aqueous extract failed to do so. Methanol and aqueous extracts produced an immunostimulating effect and all extracts revealed angiogenic activity. The aqueous extract yielded nine bands by SDS-PAGE on 12% gel

    Annual and non-monsoon rainfall prediction modelling using SVR-MLP: an empirical study from Odisha

    Get PDF
    Rainfall is a natural demolishing phenomenon. On the other side, it also serves as a major source of water when conserved through proper channel. For this issue, estimation of rain fall is of at utmost importance. The present study employed on rain fall forecasting in annual as well as non-moon session in Odisha (India). The total annual rainfall and relative humidity data were collected from period 1991-2015 from Department of Forest and Environment Govt. of Odisha. Support Vector Regression and Multilayer perception implemented for prediction of maximum rainfall in annual and non-monsoon session. Input parameter like average temperature in month, wind velocity, humidity, and cloud cover was conceder for predicting rainfall in non-monsoon session. The performance of the results was measure with MSE (mean squared error), correlation coefficient, coefficient of efficiency and MAE (mean absolute error). The results of SVR were compared to those of MLP and simple regression technique. MLP being a computationally intensive method, SVR could be used as an efficient alternative for runoff and sediment yield prediction under comparable accuracy in predictions.SVR-MLP may be used as promising alternative forecasting tool for higher accuracy in forecasting and better generalization ability
    corecore