803 research outputs found

    The [1,2,4]Triazolo[4,3-a]pyridine as a New Player in the Field of IDO1 Catalytic Holo-Inhibitors

    Get PDF
    Inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) are considered a promising strategy in cancer immunotherapy as they are able to boost the immune response and to work in synergy with other immunotherapeutic agents. Despite the fact that no IDO1 inhibitor has been approved so far, recent studies have shed light on the additional roles that IDO1 mediates beyond its catalytic activity, conferring new life to the field. Here we present a novel class of compounds originated from a structure-based virtual screening made on IDO1 active site. The starting hit compound is a novel chemotype based on a [1,2,4]triazolo[4,3-a]pyridine scaffold, so far underexploited among the heme binding moieties. Thanks to the rational and in silico-guided design of analogues, an improvement of the potency to sub-micromolar levels has been achieved, with excellent in vitro metabolic stability and exquisite selectivity with respect to other heme-containing enzymes

    Diversity in boron toxicity tolerance of Australian barley (Hordeum vulgare L.) genotypes

    Get PDF
    Boron (B) is an important micronutrient for plant growth, but is toxic when levels are too high. This commonly occurs in environments with alkaline soils and relatively low rainfall, including many of the cereal growing regions of southern Australia. Four major genetic loci controlling tolerance to high soil B have been identified in the landrace barley, Sahara 3771. Genes underlying two of the loci encode the B transporters HvBot1 and HvNIP2;1.We investigated sequence and expression level diversity in HvBot1 and HvNIP2;1 across barley germplasm, and identified five novel coding sequence alleles for HvBot1. Lines were identified containing either single or multiple copies of the Sahara HvBot1 allele. We established that only the tandemly duplicated Sahara allele conferred B tolerance, and this duplicated allele was found only in a set of nine lines accessioned in Australian collections as Sahara 3763-3771. HvNIP2;1 coding sequences were highly conserved across barley germplasm. We identified the likely causative SNP in the 5'UTR of Sahara HvNIP2;1, and propose that the creation of a small upstream open reading frame interferes with HvNIP2;1 translation in Sahara 3771. Similar to HvBot1, the tolerant HvNIP2;1 allele was unique to the Sahara barley accessions. We identified a new source of the 2H B tolerance allele controlling leaf symptom development, in the landrace Ethiopia 756.Ethiopia 756, as well as the cultivar Sloop Vic which carries both the 2H and HvBot1 B tolerance alleles derived from Sahara 3771, may be valuable as alternative parents in breeding programs targeted to high soil B environments. There is significant diversity in B toxicity tolerance among contemporary Australian barley varieties but this is not related to variation at any of the four known B tolerance loci, indicating that novel, as yet undiscovered, sources of tolerance exist.Julie E. Hayes, Margaret Pallotta, Melissa Garcia, Mehmet Tufan Öz, Jay Rongala and Tim Sutto

    Effect of Probiotic Administration on Serum Tryptophan Metabolites in Pediatric Type 1 Diabetes Patients

    Get PDF
    Type 1 diabetes (T1D) is characterized by anomalous functioning of the immuno regulatory, tryptophan-catabolic enzyme indoleamine 2,3 dioxygenase 1 (IDO1). In T1D, the levels of kynurenine—the first byproduct of tryptophan degradation via IDO1—are significantly lower than in nondiabetic controls, such that defective immune regulation by IDO1 has been recognized as potentially contributing to autoimmunity in T1D. Because tryptophan catabolism—and the production of immune regulatory catabolites—also occurs via the gut microbiota, we measured serum levels of tryptophan, and metabolites thereof, in pediatric, diabetic patients after a 3-month oral course of Lactobacillus rhamnosus GG. Daily administration of the probiotic significantly affected circulating levels of tryptophan as well as the qualitative pattern of metabolite formation in the diabetic patients, while it decreased inflammatory cytokine production by the patients. This study suggests for the first time that a probiotic treatment may affect systemic tryptophan metabolism and restrain proinflammatory profile in pediatric T1D

    The RCK2 domain of the human BKCa channel is a calcium sensor

    Get PDF
    Large conductance voltage and Ca2+-dependent K+ channels (BKCa) are activated by both membrane depolarization and intracellular Ca2+. Recent studies on bacterial channels have proposed that a Ca2+-induced conformational change within specialized regulators of K+ conductance (RCK) domains is responsible for channel gating. Each pore-forming α subunit of the homotetrameric BKCa channel is expected to contain two intracellular RCK domains. The first RCK domain in BKCa channels (RCK1) has been shown to contain residues critical for Ca2+ sensitivity, possibly participating in the formation of a Ca2+-binding site. The location and structure of the second RCK domain in the BKCa channel (RCK2) is still being examined, and the presence of a high-affinity Ca2+-binding site within this region is not yet established. Here, we present a structure-based alignment of the C terminus of BKCa and prokaryotic RCK domains that reveal the location of a second RCK domain in human BKCa channels (hSloRCK2). hSloRCK2 includes a high-affinity Ca2+-binding site (Ca bowl) and contains similar secondary structural elements as the bacterial RCK domains. Using CD spectroscopy, we provide evidence that hSloRCK2 undergoes a Ca2+-induced change in conformation, associated with an α-to-β structural transition. We also show that the Ca bowl is an essential element for the Ca2+-induced rearrangement of hSloRCK2. We speculate that the molecular rearrangements of RCK2 likely underlie the Ca2+-dependent gating mechanism of BKCa channels. A structural model of the heterodimeric complex of hSloRCK1 and hSloRCK2 domains is discussed

    Unconventional Transport Routes of Soluble and Membrane Proteins and Their Role in Developmental Biology

    Get PDF
    Many proteins and cargoes in eukaryotic cells are secreted through the conventional secretory pathway that brings proteins and membranes from the endoplasmic reticulum to the plasma membrane, passing through various cell compartments, and then the extracellular space. The recent identification of an increasing number of leaderless secreted proteins bypassing the Golgi apparatus unveiled the existence of alternative protein secretion pathways. Moreover, other unconventional routes for secretion of soluble or transmembrane proteins with initial endoplasmic reticulum localization were identified. Furthermore, other proteins normally functioning in conventional membrane traffic or in the biogenesis of unique plant/fungi organelles or in plasmodesmata transport seem to be involved in unconventional secretory pathways. These alternative pathways are functionally related to biotic stress and development, and are becoming more and more important in cell biology studies in yeast, mammalian cells and in plants. The city of Lecce hosted specialists working on mammals, plants and microorganisms for the inaugural meeting on "Unconventional Protein and Membrane Traffic" (UPMT) during 4-7 October 2016. The main aim of the meeting was to include the highest number of topics, summarized in this report, related to the unconventional transport routes of protein and membranes

    Production of Λ6^{6}_{\Lambda}H and Λ7^{7}_{\Lambda}H with the (Kstop−^{-}_{stop},π+\pi^+) reaction

    Full text link
    The production of neutron rich Λ\Lambda-hypernuclei via the (Ks−topK^-_stop,π+\pi^+) reaction has been studied using data collected with the FINUDA spectrometer at the DAΦ\PhiNE ϕ\phi-factory (LNF). The analysis of the inclusive π+\pi^+ momentum spectra is presented and an upper limit for the production of Λ6^6_\LambdaH and Λ7^7_\LambdaH from 6^6Li and 7^7Li, is assessed for the first time.Comment: 11 pages, 3 figures. Accepted for publication in PL

    A study of the proton spectra following the capture of K−K^- in 6^6Li and 12^{12}C with FINUDA

    Get PDF
    Momenta spectra of protons emitted following the capture of K−K^- in 6^6Li and 12^{12}C have been measured with 1% resolution. The 12^{12}C spectrum is smooth whereas for 6^6Li a well defined peak appears at about 500 MeV/cc. The first observation of a structure in this region was identified as a strange tribaryon or, possibly, a Kˉ\bar K-nuclear state. The peak is correlated with a π−\pi^- coming from Σ−\Sigma^- decay in flight, selected by setting momenta larger than 275 MeV/cc. The Σ−\Sigma^- could be produced, together with a 500 MeV/cc proton, by the capture of a K−K^- in a deuteron-cluster substructure of the 6^6Li nucleus. The capture rate for such a reaction is (1.62\pm 0.23_{stat} ^{+0.71}_{-0.44}(sys))%/K^-_{stop}, in agreement with the existing observations on 4^4He targets and with the hypothesis that the 6^6Li nucleus can be interpreted as a (d+α)(d+\alpha) cluster.Comment: 21 pages, 10 figures. Accepted for publication in NP

    Novel mutations in the WFS1 gene are associated with Wolfram syndrome and systemic inflammation

    Get PDF
    Mutations in the WFS1 gene, encoding wolframin (WFS1), cause endoplasmic reticulum (ER) stress and are associated with a rare autosomal-recessive disorder known as Wolfram syndrome (WS). WS is clinically characterized by childhood-onset diabetes mellitus, optic atrophy, deafness, diabetes insipidus and neurological signs. We identified two novel WFS1 mutations in a patient with WS, namely, c.316-1G > A (in intron 3) and c.757A > T (in exon 7). Both mutations, located in the N-terminal region of the protein, were predicted to generate a truncated and inactive form of WFS1. We found that although the WFS1 protein was not expressed in peripheral blood mononuclear cells (PBMCs) of the proband, no constitutive ER stress activation could be detected in those cells. In contrast, WS proband's PBMCs produced very high levels of proinflammatory cytokines (i.e. TNF-α, IL-1β, and IL-6) in the absence of any stimulus. WFS1 silencing in PBMCs from control subjects by means of small RNA interference also induced a pronounced proinflammatory cytokine profile. The same cytokines were also significantly higher in sera from the WS patient as compared to matched healthy controls. Moreover, the chronic inflammatory state was associated with a dominance of proinflammatory T helper 17 (Th17)-type cells over regulatory T (Treg) lymphocytes in the WS PBMCs. The identification of a state of systemic chronic inflammation associated with WFS1 deficiency may pave the way to innovative and personalized therapeutic interventions in WS

    Polyamorous Families – Parenting Practice, Stigma and Social Regulation

    Get PDF
    As a response to the greater visibility of alternative relationship and family forms, polyamory (i.e. the practice of consensual multi-partner relationships) has recently moved to the centre of public media attention. Questions of polyamory have emerged as a major concern within law, social policy, family sociology, gender and sexuality studies. Yet certain core issues have remained underexplored. This includes the distinctive nature of polyamorous intimacy, the structure of poly household formations and the dynamics of care work within poly families. In particular, poly parenting has been subject to tabooisation and scandalisation. Governing bodies, the judiciary and educational institutions have remained largely ignorant of polyamorous relationships. Research documents the exclusions of poly families (and individuals) from access to legal provisions and protections and their common discrimination in the courts, namely in custody cases. It further highlights the discrimination of polyidentified adolescents in school and college settings and the predicament that poly families face when interacting with public institutions (including schools and kindergardens). Insights into parenting practices and the organisation of childcare is vital for understanding the transformative potential of polyamorous ways of relating. It is also important for challenging the common demonisation and stigmatisation of polyamory within conservative family politics that perceives polyamory exclusively from a harm perspective. This paper will review and critically analyse existing research on poly parenting focussing on three dimensions: (a) parenting practices, (b) social and legal discrimination, and (c) parental response to stigmatisation. The paper argues for a stronger incorporation of queer perspectives within the guiding frameworks of research into parenting in consensually non-monogamous and polyamorous relationships to highlight the transformative potential of the ‘queer bonds’ that sustain many of these practices

    Correlated Λd\Lambda d pairs from the Kstop−A→ΛdA′K^{-}_{stop} A \to \Lambda d A' reaction

    Full text link
    Correlated Λd\Lambda d pairs emitted after the absorption of negative kaons at rest Kstop−A→ΛdA′K^{-}_{stop}A\to \Lambda d A' in light nuclei 6Li^6Li and 12C^{12}C are studied. Λ\Lambda-hyperons and deuterons are found to be preferentially emitted in opposite directions. The Λd\Lambda d invariant mass spectrum of 6Li^6Li shows a bump whose mass is 3251±\pm6 MeV/c2^2. The bump mass (binding energy), width and yield are reported. The appearance of a bump is discussed in the realm of the [Kˉ3N\bar{K}3N] clustering process in nuclei. The experiment was performed with the FINUDA spectrometer at DAΦ\PhiNE (LNF).Comment: 13 pages, 5 figures, accepted for publication in Phys. Lett.
    • …
    corecore