8 research outputs found

    Energy allocation and behaviour in the growing broiler chicken

    Get PDF
    Broiler chickens are increasingly at the forefront of global meat production but the consequences of fast growth and selection for an increase in body mass on bird health are an ongoing concern for industry and consumers. To better understand the implications of selection we evaluated energetics and behaviour over the 6-week hatch-to-slaughter developmental period in a commercial broiler. The effect of posture on resting metabolic rate becomes increasingly significant as broilers grow, as standing became more energetically expensive than sitting. The proportion of overall metabolic rate accounted for by locomotor behaviour decreased over development, corresponding to declining activity levels, mean and peak walking speeds. These data are consistent with the inference that broilers allocate energy to activity within a constrained metabolic budget and that there is a reducing metabolic scope for exercise throughout their development. Comparison with similarly sized galliforms reveals that locomotion is relatively energetically expensive in broilers

    Carbohydrate, Fat, and Amino Acid Metabolism in the Pregnant Woman and Fetus

    No full text

    Pedestrian locomotion energetics and gait characteristics of a diving bird, the great cormorant, Phalacrocorax carbo

    No full text
    Great cormorants Phalacrocorax carbo are foot propelled diving birds that seem poorly suited to locomotion on land. They have relatively short legs, which are presumably adapted for the generation of high forces during the power stroke of aquatic locomotion, and walk with a pronounced “clumsy waddle”. We hypothesise (1) that the speed, independent minimum cost of locomotion (C min, ml O2 m−1) will be high for cormorants during treadmill exercise, and (2) that cormorants will have a relatively limited speed range in comparison to more cursorial birds. We measured the rate of oxygen consumption VO2 of cormorants during pedestrian locomotion on a treadmill, and filmed them to determine duty factor (the fraction of stride period that the foot is in contact with the ground), foot contact time (t c), stride frequency (f), swing phase duration and stride length. C min was 2.1-fold higher than that predicted by their body mass and phylogenetic position, but was not significantly different from the C min of runners (Galliformes and Struthioniformes). The extrapolated y-intercept of the relationship between VO2 and speed was 1.9-fold higher than that predicted by allometry. Again, cormorants were not significantly different from runners. Contrary to our hypothesis, we therefore conclude that cormorants do not have high pedestrian transport costs. Cormorants were observed to use a grounded gait with two double support phases at all speeds measured, and showed an apparent gait transition between 0.17 and 0.25 m s−1. This transition occurs at a Froude number between 0.016 and 0.037, which is lower than the value of ~0.5 observed for many other species. However, despite the use of a limited speed range, and a gait transition at relatively low speed, we conclude that the pedestrian locomotion of these foot propelled diving birds is otherwise generally similar to that of cursorial birds at comparable relative velocities

    Impaired adaptation to extrauterine life: a teratogenic event

    No full text

    Molecular aberrations, targeted therapy, and renal cell carcinoma: current state-of-the-art

    No full text
    corecore