65 research outputs found
Carvedilol inhibits mitochondrial complex I and induces resistance to H2O2-mediated oxidative insult in H9C2 myocardial cells
AbstractCarvedilol, a β-adrenoreceptor antagonist with strong antioxidant activity, produces a high degree of cardioprotection in a variety of experimental models of ischemic cardiac injury. Although growing evidences suggest specific effects on mitochondrial metabolism, how carvedilol would exert its overall activity has not been completely disclosed. In the present work we have investigated the impact of carvedilol-treatment on mitochondrial bioenergetic functions and ROS metabolism in H9C2 cells. This analysis has revealed a dose-dependent decrease in respiratory fluxes by NAD-dependent substrates associated with a consistent decline of mitochondrial complex I activity. These changes were associated with an increase in mitochondrial H2O2 production, total glutathione and protein thiols content. To evaluate the antioxidant activity of carvedilol, the effect of the exposure of control and carvedilol-pretreated H9C2 cells to H2O2 were investigated. The H2O2-mediated oxidative insult resulted in a significant decrease of mitochondrial respiration, glutathione and protein thiol content and in an increased level of GSSG. These changes were prevented by carvedilol-pretreatment. A similar protective effect on mitochondrial respiration could be obtained by pre-treatment of the cells with a sub-saturating amount of rotenone, a complex I inhibitor.We therefore suggest that carvedilol exerts its protective antioxidant action both by a direct antioxidant effect and by a preconditioning-like mechanism, via inhibition of mitochondrial complex I
Elevated Mitochondrial Bioenergetics and Axonal Arborization Size Are Key Contributors to the Vulnerability of Dopamine Neurons
SummaryAlthough the mechanisms underlying the loss of neurons in Parkinson’s disease are not well understood, impaired mitochondrial function and pathological protein aggregation are suspected as playing a major role. Why DA (dopamine) neurons and a select small subset of brain nuclei are particularly vulnerable to such ubiquitous cellular dysfunctions is presently one of the key unanswered questions in Parkinson’s disease research. One intriguing hypothesis is that their heightened vulnerability is a consequence of their elevated bioenergetic requirements. Here, we show for the first time that vulnerable nigral DA neurons differ from less vulnerable DA neurons such as those of the VTA (ventral tegmental area) by having a higher basal rate of mitochondrial OXPHOS (oxidative phosphorylation), a smaller reserve capacity, a higher density of axonal mitochondria, an elevated level of basal oxidative stress, and a considerably more complex axonal arborization. Furthermore, we demonstrate that reducing axonal arborization by acting on axon guidance pathways with Semaphorin 7A reduces in parallel the basal rate of mitochondrial OXPHOS and the vulnerability of nigral DA neurons to the neurotoxic agents MPP+ (1-methyl-4-phenylpyridinium) and rotenone. Blocking L-type calcium channels with isradipine was protective against MPP+ but not rotenone. Our data provide the most direct demonstration to date in favor of the hypothesis that the heightened vulnerability of nigral DA neurons in Parkinson’s disease is directly due to their particular bioenergetic and morphological characteristics
TNFα signals via p66Shcto induce E-selectin, promote leukocyte transmigration and enhance permeability in human endothelial cells
Endothelial cells participate in inflammatory events leading to atherogenesis by regulating endothelial cell permeability via the expression of VE-Cadherin and β-catenin and leukocyte recruitment via the expression of E-Selectins and other adhesion molecules. The protein p66Shc acts as a sensor/inducer of oxidative stress and may promote vascular dysfunction. The objective of this study was to investigate the role of p66Shc in tumor necrosis factor TNFα-induced E-Selectin expression and function in human umbilical vein endothelial cells (HUVEC). Exposure of HUVEC to 50 ng/ml TNFα resulted in increased leukocyte transmigration through the endothelial monolayer and E-Selectin expression, in association with augmented phosphorylation of both p66Shc on Ser36 and the stress kinase c-Jun NH2-terminal protein kinase (JNK)-1/2, and higher intracellular reactive oxygen species (ROS) levels. Overexpression of p66 Shc in HUVEC resulted in enhanced p66Shc phosphorylation on Ser36, increased ROS and E-Selectin levels, and amplified endothelial cell permeability and leukocyte transmigration through the HUVEC monolayer. Conversely, overexpression of a phosphorylation-defective p66 Shc protein, in which Ser36 was replaced by Ala, did not augment ROS and E-Selectin levels, nor modify cell permeability or leukocyte transmigration beyond those found in wild-type cells. Moreover, siRNA-mediated silencing of p66Shc resulted in marked reduction of E-Selectin expression and leukocyte transmigration. In conclusion, p66Shc acts as a novel intermediate in the TNFα pathway mediating endothelial dysfunction, and its action requires JNK-dependent phosphorylation of p66 Shc on Ser36. © 2013 Laviola et al
Effect of resveratrol on mitochondrial function: Implications in parkin-associated familiar Parkinson's disease
Mitochondrial dysfunction and oxidative stress occur in Parkinson's disease (PD), but the molecular mechanisms controlling these events are not completely understood. Peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) is a transcriptional coactivator known as master regulator of mitochondrial functions and oxidative metabolism. Recent studies, including one from our group, have highlighted altered PGC-1α activity and transcriptional deregulation of its target genes in PD pathogenesis suggesting it as a new potential therapeutic target. Resveratrol, a natural polyphenolic compound proved to improve mitochondrial activity through the activation of several metabolic sensors resulting in PGC-1α activation. Here we have tested in vitro the effect of resveratrol treatment on primary fibroblast cultures from two patients with early-onset PD linked to different Park2 mutations. We show that resveratrol regulates energy homeostasis through activation of AMP-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) and raise of mRNA expression of a number of PGC-1α's target genes resulting in enhanced mitochondrial oxidative function, likely related to a decrease of oxidative stress and to an increase of mitochondrial biogenesis. The functional impact of resveratrol treatment encompassed an increase of complex I and citrate synthase activities, basal oxygen consumption, and mitochondrial ATP production and a decrease in lactate content, thus supporting a switch from glycolytic to oxidative metabolism. Moreover, resveratrol treatment caused an enhanced macro-autophagic flux through activation of an LC3-independent pathway. Our results, obtained in early-onset PD fibroblasts, suggest that resveratrol may have potential clinical application in selected cases of PD-affected patients
Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming
Human mesenchymal stromal cells (MSC) have been shown to dampen immune response and promote tissue repair, but the underlying mechanisms are still under investigation. Herein, we demonstrate that umbilical cord-derived MSC (UC-MSC) alter the phenotype and function of monocyte-derived dendritic cells (DC) through lactate-mediated metabolic reprogramming. UC-MSC can secrete large quantities of lactate and, when present during monocyte-to-DC differentiation, induce instead the acquisition of M2-macrophage features in terms of morphology, surface markers, migratory properties and antigen presentation capacity. Microarray expression profiling indicates that UC-MSC modify the expression of metabolic-related genes and induce a M2-macrophage expression signature. Importantly, monocyte-derived DC obtained in presence of UC-MSC, polarize naĂŻve allogeneic CD4+ T-cells into Th2 cells. Treatment of UC-MSC with an inhibitor of lactate dehydrogenase strongly decreases lactate concentration in culture supernatant and abrogates the effect on monocyte-to- DC differentiation. Metabolic analysis further revealed that UC-MSC decrease oxidative phosphorylation in differentiating monocytes while strongly increasing the spare respiratory capacity proportional to the amount of secreted lactate. Because both MSC and monocytes are recruited in vivo at the site of tissue damage and inflammation, we propose the local increase of lactate concentration induced by UC-MSC and the consequent enrichment in M2-macrophage generation as a mechanism to achieve immunomodulation
Autonomous Oscillatory Mitochondrial Respiratory Activity: Results of a Systematic Analysis Show Heterogeneity in Different In Vitro-Synchronized Cancer Cells
Circadian oscillations of several physiological and behavioral processes are an established process in all the organisms anticipating the geophysical changes recurring during the day. The time-keeping mechanism is controlled by a transcription translation feedback loop involving a set of well-characterized transcription factors. The synchronization of cells, controlled at the organismal level by a brain central clock, can be mimicked in vitro, pointing to the notion that all the cells are endowed with an autonomous time-keeping system. Metabolism undergoes circadian control, including the mitochondrial terminal catabolic pathways, culminating under aerobic conditions in the electron transfer to oxygen through the respiratory chain coupled to the ATP synthesis according to the oxidative phosphorylation chemiosmotic mechanism. In this study, we expanded upon previous isolated observations by utilizing multiple cell types, employing various synchronization protocols and different methodologies to measure mitochondrial oxygen consumption rates under conditions simulating various metabolic stressors. The results obtained clearly demonstrate that mitochondrial respiratory activity undergoes rhythmic oscillations in all tested cell types, regardless of their individual respiratory proficiency, indicating a phenomenon that can be generalized. However, notably, while primary cell types exhibited similar rhythmic respiratory profiles, cancer-derived cell lines displayed highly heterogeneous rhythmic changes. This observation confirms on the one hand the dysregulation of the circadian control of the oxidative metabolism observed in cancer, likely contributing to its development, and on the other hand underscores the necessity of personalized chronotherapy, which necessitates a detailed characterization of the cancer chronotype
EXAFS reveals a structural zinc binding site in the bovine NADH-Q oxidoreductase
none7noneL. Giachini; F. Francia; F. Boscherini; C. Pacelli; T. Cocco; S. Papa; G. VenturoliL. Giachini; F. Francia; F. Boscherini; C. Pacelli; T. Cocco; S. Papa; G. Venturol
Effect of Chicken Bone Extracts on Metabolic and Mitochondrial Functions of K562 Cell Line
Background: Tetracyclines’ use in intensive animal farming has raised some concerns regarding the biosafety for humans. Increasing evidences have revealed the presence of these drugs in processed animal by-products, such as bone, throughout the food chain. A potential off-target of tetracyclines is the bacterial-like mitochondrial translational machinery, thereby causing proteostatic alterations in mitochondrial DNA-encoded components of the oxidative phosphorylation system. Methods: The Seahorse methodology, confocal microscopy imaging of mitochondrial potential and reactive oxygen species, and q-RT-PCR analysis of the expression of genes involved in mitochondrial biogenesis and mitophagy were carried out on human lymphoblast derived K562 cell line challenged with bone powder derived from chicken treated with or without oxytetracycline and pure oxytetracycline. Results: A complex dose-dependent profile was attained with a low dosage of bone powder extracts causing a metabolic adaptation hallmarked by stimulation of the mitochondrial respiration and enhanced expression of mitochondriogenic factors in particular in cells challenged with oxytetracycline-free bone extract. Conversely, a higher dosage of bone powder extracts, regardless of their source, caused a progressive inhibition of mitochondrial respiration and glycolysis, ultimately leading to cell death. No significant effects of the pure oxytetracycline were observed. Conclusion: Bone powder, regardless of chicken treatment, contains and releases factors/chemicals responsible for the observed effects on energy metabolism. Quantitative differential effects appear to depend on biochemical alterations in the bone matrix caused by antibiotics rather than antibiotics themselves
Mitochondrial calcium drives clock gene-dependent activation of pyruvate dehydrogenase and of oxidative phosphorylation
Regulation of metabolism is emerging as a major output of circadian clock circuitry in mammals. Accordingly, mitochondrial oxidative metabolism undergoes both in vivo and in vitro daily oscillatory activities. In the present study we show that both glycolysis and mitochondrial oxygen consumption display a similar time-resolved rhythmic activity in synchronized HepG2 cell cultures, which translates in overall bioenergetic changes as documented by measurement of the ATP level. Treatment of synchronized cells with specific metabolic inhibitors unveiled pyruvate as a major source of reducing equivalents to the respiratory chain with its oxidation driven by the rhythmic (de)phosphorylation of pyruvate dehydrogenase. Further investigation enabled to causally link the autonomous cadenced mitochondrial respiration to a synchronous increase of the mitochondrial Ca2+. The rhythmic change of the mitochondrial respiration was dampened by inhibitors of the mitochondrial Ca2+ uniporter as well as of the ryanodine receptor Ca2+ channel or the ADPR cyclase, indicating that the mitochondrial Ca2+ influx originated from the ER store, likely at contact sites with the mitochondrial compartment. Notably, blockage of the mitochondrial Ca2+ influx resulted in deregulation of the expression of canonical clock genes such as BMALl1, CLOCK, NR1D1. All together our findings unveil a hitherto unexplored function of Ca2+-mediated signaling in time keeping the mitochondrial metabolism and in its feed-back modulation of the circadian clockwork
- …