51 research outputs found

    Serotype distribution of Streptococcus pneumoniae causing invasive disease in children in the post-PCV era:A systematic review and meta-analysis

    Get PDF
    BACKGROUND:Routine immunisation with pneumococcal conjugate vaccines (PCV7/10/13) has reduced invasive pneumococcal disease (IPD) due to vaccine serotypes significantly. However, an increase in disease due to non-vaccine types, or serotype replacement, has been observed. Serotypes' individual contributions to IPD play a critical role in determining the overall effects of PCVs. This study examines the distribution of pneumococcal serotypes in children to identify leading serotypes associated with IPD post-PCV introduction. METHODS:A systematic search was performed to identify studies and surveillance reports (published between 2000 and December 2015) of pneumococcal serotypes causing childhood IPD post-PCV introduction. Serotype data were differentiated based on the PCV administered during the study period: PCV7 or higher valent PCVs (PCV10 or PCV13). Meta-analysis was conducted to estimate the proportional contributions of the most frequent serotypes in childhood IPD in each period. RESULTS:We identified 68 studies reporting serotype data among IPD cases in children. We analysed data from 38 studies (14 countries) where PCV7 was administered and 20 (24 countries) where PCV10 or PCV13 have been introduced. Studies reported early and late periods of PCV7 administration (range: 2001∓13). In these settings, serotype 19A was the most predominant cause of childhood IPD, accounting for 21.8% (95%CI 18.6∓25.6) of cases. In countries that have introduced higher valent PCVs, study periods were largely representative of the transition and early years of PCV10 or PCV13. In these studies, the overall serotype-specific contribution of 19A was lower (14.2% 95%CI 11.1∓18.3). Overall, non-PCV13 serotypes contributed to 42.2% (95%CI 36.1∓49.5%) of childhood IPD cases. However, regional differences were noted (57.8% in North America, 71.9% in Europe, 45.9% in Western Pacific, 28.5% in Latin America, 42.7% in one African country, and 9.2% in one Eastern Mediterranean country). Predominant non-PCV13 serotypes overall were 22F, 12F, 33F, 24F, 15C, 15B, 23B, 10A, and 38 (descending order), but their rank order varied by region. CONCLUSION:Childhood IPD is associated with a wide number of serotypes. In the early years after introduction of higher valent PCVs, non-PCV13 types caused a considerable proportion of childhood IPD. Serotype data, particularly from resource-limited countries with high burden of IPD, are needed to assess the importance of serotypes in different settings. The geographic diversity of pneumococcal serotypes highlights the importance of continued surveillance to guide vaccine design and recommendations

    Assessment of baseline age-specific antibody prevalence and incidence of infection to novel influenza A/H1N1 2009.

    Get PDF
    OBJECTIVES: The objectives of the H1N1 2009 serological surveillance project were twofold: to document (1) the prevalence of cross-reactive antibodies to H1N1 2009 by age group in the population of England prior to arrival of the pandemic strain virus in the UK and (2) the age-specific incidence of infection by month as the pandemic progressed by measuring increases in the proportion of individuals with antibodies to H1N1 2009 by age. METHODS: Residual aliquots of samples submitted to 16 microbiology laboratories in eight regions in England in defined age groups in 2008 and stored by the Health Protection Agency serological surveillance programme were used to document age-stratified prevalence of antibodies to H1N1 2009 prior to the arrival of the pandemic in the UK. Functional antibodies to the H1N1 2009 virus were measured by haemagglutination inhibition (HI) and microneutralisation (MN) assays. For timely measurement of monthly incidence of infection with H1N1 2009 between August 2009 and April 2010, the microbiology serum collections were supplemented by collection of residual sera from chemical pathology laboratories in England. Monthly seroincidence samples were tested by HI only, apart from the final sera collected post pandemic in 2010, which were also tested by MN. Incidence during the pandemic was estimated from changes in prevalence between time points and also by a likelihood-based method. SETTING: Eight regions of England. PARTICIPANTS: Serum samples from patients accessing health care in England from whom blood samples were taken for unrelated microbiological or chemical pathology testing. INTERVENTIONS: None. MAIN OUTCOME MEASURES: Baseline age-specific prevalence of functional antibodies to the H1NI 2009 virus prior to the arrival of the pandemic; changes in antibody prevalence during the period August 2009 to April 2010. RESULTS: Pre-existing cross-reactive antibodies to H1N1 2009 were detected in the baseline sera and increased with age, particularly in those born before 1950. The prediction of immunological protection derived from the baseline serological analysis was consistent with the lower clinical attack rates in older age groups. The high levels of susceptibility in children < 15 years, together with their mixing within school, resulted in the highest attack rates in this age group. Serological analysis by region confirms that there were geographical differences in timing of major pandemic waves. London had a big first wave among the 5- to 14-year age group, with the rest of the country reducing the gap after the second wave. Cumulative incidence in London remained higher throughout the pandemic in each age group. By the end of the second wave it is estimated that as many as 70% of school-aged children in London had been infected. Taken together, these observations are consistent with observations from previous pandemics in 1918, 1957 and 1968 - that the major impact of influenza pandemics is on younger age groups, with a pattern of morbidity and mortality distinct from seasonal influenza epidemics. CONCLUSIONS: Serological analysis of appropriately structured, age-stratified and geographically representative samples can provide an immense amount of information to set in context other measures of pandemic impact in a population, and provide the most accurate measures of population exposure. National scale seroepidemiology studies require cross-agency coordination, multidisciplinary working, and considerable scientific resource. FUNDING: The National Institute for Health Research Health Technology Assessment programme and the Health Protection Agency

    Exploring the role of competition induced by non-vaccine serotypes for herd protection following pneumococcal vaccination

    Get PDF
    The competitive pressure from non-vaccine serotypes may have helped pneumococcal conjugate vaccines (PCVs) to limit vaccine-type (VT) serotype prevalence. We aimed to investigate if, consequently, the indirect protection of vaccines targeting most pneumococcal serotypes could fall short of the profound effects of current formulations. We compared three previously described pneumococcal models harmonized to simulate 20 serotypes with a combined pre-vaccination prevalence in children younger than 5-years-old of 40%. We simulated vaccines of increasing valency by adding serotypes in order of their competitiveness and explored their ability to reduce VT carriage by 95% within 10 years after introduction. All models predicted that additional valency will reduce indirect vaccine effects and hence the overall vaccine impact on carriage both in children and adults. Consequently, the minimal effective coverage (efficacy against carriage×vaccine coverage) needed to eliminate VT carriage increased with increasing valency. One model predicted this effect to be modest, while the other two predicted that high-valency vaccines may struggle to eliminate VT pneumococci unless vaccine efficacy against carriage can be substantially improved. Similar results were obtained when settings of higher transmission intensity and different PCV formulations were explored. Failure to eliminate carriage as a result of increased valency could lead to overall decreased impact of vaccination if the disease burden caused by the added serotypes is low. Hence, a comparison of vaccine formulations of varying valency, and pan-valent formulations in particular, should consider the invasiveness of targeted serotypes, as well as efficacy against carriage

    Hospitalization in two waves of pandemic influenza A(H1N1) in England.

    No full text
    Uncertainties exist regarding the population risks of hospitalization due to pandemic influenza A(H1N1). Understanding these risks is important for patients, clinicians and policy makers. This study aimed to clarify these uncertainties. A national surveillance system was established for patients hospitalized with laboratory-confirmed pandemic influenza A(H1N1) in England. Information was captured on demographics, pre-existing conditions, treatment and outcomes. The relative risks of hospitalization associated with pre-existing conditions were estimated by combining the captured data with population prevalence estimates. A total of 2416 hospitalizations were reported up to 6 January 2010. Within the population, 4·7 people/100,000 were hospitalized with pandemic influenza A(H1N1). The estimated hospitalization rate of cases showed a U-shaped distribution with age. Chronic kidney disease, chronic neurological disease, chronic respiratory disease and immunosuppression were each associated with a 10- to 20-fold increased risk of hospitalization. Patients who received antiviral medication within 48 h of symptom onset were less likely to be admitted to critical care than those who received them after this time (adjusted odds ratio 0·64, 95% confidence interval 0·44-0·94, P=0·024). In England the risk of hospitalization with pandemic influenza A(H1N1) has been concentrated in the young and those with pre-existing conditions. By quantifying these risks, this study will prove useful in planning for the next winter in the northern and southern hemispheres, and for future pandemics
    • …
    corecore